Answer:
See the attachment below for the graphics in part (a)
The initial velocity for this time interval is u = 61ft/sec and the final velocity is 0m/s because the car comes to a stop.
This a constant acceleration motion considering the given time interview over which the brakes are applied. So the equals for constant acceleration motion apply here.
Explanation:
The full solution can be found in the attachment below.
Thank you for reading. I hope this post is helpful to you.
Answer:
One of the basic principles of chemistry is the electrostatic attraction between atoms or compounds. Electrons are on the outside of an atoms and that's where the charges come from and the interaction between those charges is what happens during a chemical bond. Therefore the answer would be electrons.
Answer:
a

b

Explanation:
From the question we are told that
The wavelength of the light is 
The distance of the slit separation is 
Generally the condition for two slit interference is

Where m is the order which is given from the question as m = 2
=> ![\theta = sin ^{-1} [\frac{m \lambda}{d} ]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7Bm%20%5Clambda%7D%7Bd%7D%20%5D)
substituting values

Now on the second question
The distance of separation of the slit is

The intensity at the the angular position in part "a" is mathematically evaluated as
![I = I_o [\frac{sin \beta}{\beta} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%5Cbeta%7D%7B%5Cbeta%7D%20%5D%5E2)
Where
is mathematically evaluated as

substituting values


So the intensity is
![I = I_o [\frac{sin (0.06581)}{0.06581} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%280.06581%29%7D%7B0.06581%7D%20%5D%5E2)

Answer:
10 :)
You have to divide the difference of speed and divide it by the time. So 100-20 would be 80, and if you divide that by 8 it would be 10.
Hope this helps.
There are three types: divergent, convergent, and transform boundaries. I hope this helps.