Answer:
The pouring of the molten metal during casting is done very slowly hence the molten metal froze before reaching all parts of the mould cavity. also the early freezing can occur if the temperature of the molten metal was lower than the required temperature for casting
Explanation:
since the same components are being casted at other foundries and they don't have the defects ,
Hence the reason for the defects experienced by these components can be caused when the pouring of the molten metal during casting is done very slowly hence the molten metal froze before reaching all parts of the mould cavity. also the early freezing can occur if the temperature of the molten metal was lower than the required temperature for casting .
Given Information:
Inductance = L = 5 mH = 0.005 H
Time = t = 2 seconds
Required Information:
Current at t = 2 seconds = i(t) = ?
Energy at t = 2 seconds = W = ?
Answer:
Current at t = 2 seconds = i(t) = 735.75 A
Energy at t = 2 seconds = W = 1353.32 J
Explanation:
The voltage across an inductor is given as

The current flowing through the inductor is given by

Where L is the inductance and i(0) is the initial current in the inductor which we will assume to be zero since it is not given.
![i(t) = \frac{1}{0.005} \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \,+ 0\\\\i(t) = 200 \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \\\\i(t) = 200 \: [ {5\: (t + \frac{e^{-0.5t}}{0.5})]_0^t \\i(t) = 200\times5\: \: [ { (t + 2e^{-0.5t} + 2 )] \\](https://tex.z-dn.net/?f=i%28t%29%20%3D%20%5Cfrac%7B1%7D%7B0.005%7D%20%5Cint_0%5Et%20%5Cmathrm%7B5%281-e%5E%7B-0.5t%7D%7D%29%20%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%2C%2B%200%5C%5C%5C%5Ci%28t%29%20%3D%20200%20%5Cint_0%5Et%20%5Cmathrm%7B5%281-e%5E%7B-0.5t%7D%7D%29%20%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%5C%5C%5Ci%28t%29%20%3D%20200%20%5C%3A%20%5B%20%7B5%5C%3A%20%28t%20%2B%20%5Cfrac%7Be%5E%7B-0.5t%7D%7D%7B0.5%7D%29%5D_0%5Et%20%5C%5Ci%28t%29%20%3D%20200%5Ctimes5%5C%3A%20%5C%3A%20%5B%20%7B%20%28t%20%2B%202e%5E%7B-0.5t%7D%20%2B%202%20%29%5D%20%5C%5C)

So the current at t = 2 seconds is

The energy stored in the inductor at t = 2 seconds is

Answer:
Tm = 366.66k
Explanation:
check for the step by step explanation in the attachment