Answer:
a
The rate of work developed is ![\frac{\r W}{\r m}= 300kJ/kg](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cr%20W%7D%7B%5Cr%20m%7D%3D%20300kJ%2Fkg)
b
The rate of entropy produced within the turbine is
Explanation:
From the question we are told
The rate at which heat is transferred is ![\frac{\r Q}{\r m } = - 30KJ/kg](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cr%20Q%7D%7B%5Cr%20m%20%7D%20%3D%20-%20%2030KJ%2Fkg)
the negative sign because the heat is transferred from the turbine
The specific heat capacity of air is ![c_p = 1.1KJ/kg \cdot K](https://tex.z-dn.net/?f=c_p%20%3D%201.1KJ%2Fkg%20%5Ccdot%20K)
The inlet temperature is ![T_1 = 970K](https://tex.z-dn.net/?f=T_1%20%3D%20970K)
The outlet temperature is ![T_2 = 670K](https://tex.z-dn.net/?f=T_2%20%3D%20670K)
The pressure at the inlet of the turbine is ![p_1 = 400 kPa](https://tex.z-dn.net/?f=p_1%20%3D%20400%20kPa)
The pressure at the exist of the turbine is ![p_2 = 100kPa](https://tex.z-dn.net/?f=p_2%20%3D%20100kPa)
The temperature at outer surface is ![T_s = 315K](https://tex.z-dn.net/?f=T_s%20%3D%20315K)
The individual gas constant of air R with a constant value ![R = 0.287kJ/kg \cdot K](https://tex.z-dn.net/?f=R%20%3D%200.287kJ%2Fkg%20%5Ccdot%20K)
The general equation for the turbine operating at steady state is \
![\r Q - \r W + \r m (h_1 - h_2) = 0](https://tex.z-dn.net/?f=%5Cr%20Q%20-%20%5Cr%20W%20%2B%20%5Cr%20m%20%28h_1%20-%20h_2%29%20%3D%200)
h is the enthalpy of the turbine and it is mathematically represented as
![h = c_p T](https://tex.z-dn.net/?f=h%20%3D%20c_p%20T)
The above equation becomes
![\r Q - \r W + \r m c_p(T_1 - T_2) = 0](https://tex.z-dn.net/?f=%5Cr%20Q%20-%20%5Cr%20W%20%2B%20%5Cr%20m%20c_p%28T_1%20-%20T_2%29%20%3D%200)
![\frac{\r W}{\r m} = \frac{\r Q}{\r m} + c_p (T_1 -T_2)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cr%20W%7D%7B%5Cr%20m%7D%20%20%3D%20%5Cfrac%7B%5Cr%20Q%7D%7B%5Cr%20m%7D%20%2B%20c_p%20%28T_1%20-T_2%29)
Where
is the heat transfer from the turbine
is the work output from the turbine
is the mass flow rate of air
is the rate of work developed
Substituting values
![\frac{\r W}{\r m} = (-30)+1.1(970-670)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cr%20W%7D%7B%5Cr%20m%7D%20%3D%20%20%28-30%29%2B1.1%28970-670%29)
![\frac{\r W}{\r m}= 300kJ/kg](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cr%20W%7D%7B%5Cr%20m%7D%3D%20300kJ%2Fkg)
The general balance equation for an entropy rate is represented mathematically as
![\frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma = 0](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cr%20Q%7D%7BT_s%7D%20%2B%20%5Cr%20m%20%28s_1%20-s_2%29%20%2B%20%5Csigma%20%20%3D%200)
=> ![\frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csigma%7D%7B%5Cr%20m%7D%20%3D%20-%20%5Cfrac%7B%5Cr%20Q%7D%7B%5Cr%20m%20T_s%7D%20%2B%20%28s_1%20-s_2%29)
generally ![(s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]](https://tex.z-dn.net/?f=%28s_1%20-s_2%29%20%3D%20%5CDelta%20s%20%3D%20c_p%5C%20ln%5B%5Cfrac%7BT_2%7D%7BT_1%7D%20%5D%20%2B%20R%20%5C%20ln%5B%5Cfrac%7Bv_2%7D%7Bv_1%7D%20%5D)
substituting for
![\frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} + c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csigma%7D%7B%5Cr%20m%7D%20%3D%20%5Cfrac%7B-%5Cr%20Q%7D%7B%5Cr%20m%7D%20%2A%20%5Cfrac%7B1%7D%7BT_s%7D%20%2B%20%20c_p%5C%20ln%5B%5Cfrac%7BT_2%7D%7BT_1%7D%20%5D%20-%20R%20%5C%20ln%5B%5Cfrac%7Bp_2%7D%7Bp_1%7D%20%5D)
Where
is the rate of entropy produced within the turbine
substituting values
![\frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csigma%7D%7B%5Cr%20m%7D%20%3D%20-%20%28-30%29%20%2A%20%5Cfrac%7B1%7D%7B315%7D%20%2B%201.1%20%2A%20ln%5Cfrac%7B670%7D%7B970%7D%20-%200.287%20%2A%20ln%20%5B%5Cfrac%7B100kPa%7D%7B400kPa%7D%20%5D)