1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
3 years ago
6

Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w

ater and its container are heated to 70oC. Assuming no evaporation, what then will be the depth of the water column if the coefficient of thermal expansion for the glass is 3.8*10-6 mm/mm peroC ?
Engineering
1 answer:
Dafna11 [192]3 years ago
4 0

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

You might be interested in
A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.6 mm; the spe
ankoles [38]

Answer:

F =  8849 N

Explanation:

Given:

Load at a given point = F =  4250 N

Support span = L = 44 mm

Radius = R = 5.6 mm

length thickness of tested material = 12 mm

First compute the flexural strength for circular cross section using the formula below:

σ_{fs} = F_{f} L / \pi  R^{3}

σ = FL / π R³

Putting the given values in the above formula:

σ = 4250 ( 44 x 10⁻³ ) / π  ( 5.6 x 10⁻³ ) ³

  = 4250 ( 44 x 10⁻³ )  / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 (44 x 1 /1000 )) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 ( 11 / 250  ) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 187 / 3.141593 ( 5.6 x 1 / 1000 ) ³

  = 187 / 3.141593 (0.0056)³

  = 338943767.745358

  = 338.943768 x 10⁶

σ = 338 x 10⁶ N/m²

Now we compute the load i.e. F from the following formula:

F_{f} = 2 σ_{fs} d³/3 L

F = 2σd³/3L

  = 2(338 x 10⁶)(12 x 10⁻³)³ / 3(44 x 10⁻³)

  = 2 ( 338 x 1000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 2 ( 338000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12  x  1/1000  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  3  / 250  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  27  / 15625000 )  / 3 ( 44 x 10⁻³)

  = 146016  / 125 / 3 ( 44 x 1 / 1000  )

  = ( 146016  / 125 ) /  (3 ( 11 /  250 ))

  =  97344  / 11

F =  8849 N

4 0
3 years ago
It is given that 50 kg/sec of air at 288.2k is iesntropically compressed from 1 to 12 atm. Assuming a calorically perfect gas, d
denis23 [38]

The exit temperature is 586.18K and  compressor input power is 14973.53kW

Data;

  • Mass = 50kg/s
  • T = 288.2K
  • P1 = 1atm
  • P2 = 12 atm

<h3>Exit Temperature </h3>

The exit temperature of the gas can be calculated isentropically as

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{y-1}{y}\\ y = 1.4\\ C_p= 1.005 Kj/kg.K\\

Let's substitute the values into the formula

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{y-1}{y} \\\frac{T_2}{288.2} = (\frac{12}{1})^\frac{1.4-1}{1.4} \\ T_2 = 586.18K

The exit temperature is 586.18K

<h3>The Compressor input power</h3>

The compressor input power is calculated as

P= mC_p(T_2-T_1)\\P = 50*1.005*(586.18-288.2)\\P= 14973.53kW

The compressor input power is 14973.53kW

Learn more on exit temperature and compressor input power here;

brainly.com/question/16699941

brainly.com/question/10121263

6 0
2 years ago
Question
Leto [7]

Answer:

True

Explanation:

The CNC is the primary interface between the machine operator and the machine.

4 0
2 years ago
For an isotropic material, E and ν are often chosen as the two independent engineering constants. There are other elastic consta
pav-90 [236]

Answer:

khgy

Explanation:

nbv

8 0
3 years ago
The two boxcars A and B have a weight of 20 000 Ib and 30 000 Ib, respectively. If they coast freely down the incline when the b
Tpy6a [65]

Answer:

Answer for the question :

"the two boxcars A and B have a weight of 20 000 Ib and 30 000 Ib, respectively. If they coast freely down the incline when the brakes are applied to all the wheels of car A causing it to skid, determine the force in the coupling C between the two cars. The coefficient of kinetic friction between the wheels of A and the tracks is μk=0.5. The wheels of car B are free to roll. Neglect their mass in calculation."

is explained in the attachment.

Explanation:

Download pdf
3 0
3 years ago
Read 2 more answers
Other questions:
  • For each of the following stacking sequences found in FCC metals, cite the type of planar defect that exists:
    7·1 answer
  • Anyone have 11th grade engineering on odyssey ware?
    8·1 answer
  • How many power station do we have​
    14·1 answer
  • QUESTÃO 13. Explique o uso das aspas no trecho "Darei a cada uma de vocês
    12·1 answer
  • Convert A'B'C'D' + A'B'C'D + A'B'CD' + A'BC'D + AB'C'D' + AB'C'D+ AB'CD' to SOP form
    12·2 answers
  • What is 94*738^389428394
    8·1 answer
  • What is the maximum fine for knowingly refilling a disposable refrigerant drum?
    11·1 answer
  • Dndbgddbdbhfdhdhdhhfhffhfhhddhhdhdhdhdhd​
    11·2 answers
  • Select the correct answer. Felix aspires to be an engineer working for the government. What credentials will Felix require to ap
    5·1 answer
  • Although studs are sometimes spaced 24" O.C. in residential structures, a spacing of_____ O.C. is more commonly used.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!