Answer:
The surface charge density on the conductor is found to be 26.55 x 1-6-12 C/m²
Explanation:
The electric field intensity due to a thin conducting sheet is given by the following formula:
Electric Field Intensity = (Surface Charge Density)/2(Permittivity of free space)
From this formula:
Surface Charge Density = 2(Electric Field Intensity)(Permittivity of free space)
We have the following data:
Electric Field Intensity = 1.5 N/C
Permittivity of free space = 8.85 x 10^-12 C²/N.m²
Therefore,
Surface Charge Density = 2(1.5 N/C)(8.85 x 10^-12 C²/Nm²)
<u>Surface Charge Density = 26.55 x 10^-12 C/m²</u>
Hence, the surface charge density on the conducting thin sheet will be 26.55 x 10^ -12 C/m².
The answer for this question is A
The technician that is correct about either testing lights for simple tests or to check SRS Circuits is; Technician A.
<h3>Which Technician is Correct?</h3>
First of all it is pertinent to note that test lights are generally small bulbs that are turned on by the voltage and current flowing through the circuit in analog circuits.
Now, the two values of voltage and current are high and sufficient to light up the bulb. However, in digital circuits, the current is very small in the order of milliamps, and as a result there is not enough power to turn on the lights.
Thus, we can conclude that Technician A is correct.
Read more about Correct Technician at; brainly.com/question/14449935
Answer:
the generator induced voltage is 60.59 kV
Explanation:
Given:
S = 150 MVA
Vline = 24 kV = 24000 V

the network voltage phase is

the power transmitted is equal to:

the line induced voltage is

True
Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two.[1] Suspension systems must support both road holding/handling and ride quality