1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
3 years ago
13

Barack is playing basketball in his back yard. He takes a shot 7.0 m from the basket (measured along the ground), shooting at an

angle of 45 degrees. The ball is 2.0 m off the ground when it leaves his hand, and hits the backboard 3.5 m off the ground. Neglecting air friction, about how long is the ball in flight?
Physics
1 answer:
VMariaS [17]3 years ago
6 0

Answer:

The time of flight of the ball is 1.06 seconds.

Explanation:

Given \Delta x=7\ m

\theta=45 \°

Also, \Delta y=(3.5-2)=1.5\ m

a_x=0\ and\ a_y=-9.81\ m/s^2

Let us say the velocity in the x-direction is v_x and in the y-direction is v_y. And acceleration in the x-direction is a_x and in the y-direction is a_y.

Also, \Delta x\ and\ \Delta y is distance covered in x and y direction respectively. And t is the time taken by the ball to hit the backboard.

We can write v_x=v_0cos(45)\ and\ v_y=v_0sin(45). Where v_0 is velocity of ball.

Now,

\Delta x=v_x\times t+\frac{1}{2}\times a_x\times t^2\\ \Delta x=v_x\times t+\frac{1}{2}\times 0\times t^2\\\Delta x=v_xt

\Delta x=v_0cos(45)\times t\\7=v_0cos(45)\times t\\\\t=\frac{7}{v_0cos(45)}

Also,

\Delta y=v_y\times t+\frac{1}{2}\times a_y\times t^2\\ 1.5=v_0sin(45)\times \frac{7}{v_0cos(45)}+\frac{1}{2}\times (-9.81)\times(\frac{7}{v_0cos(45)} )^2\\\\1.5=7-\frac{481}{(v_0)^2}\\ \\\frac{481}{(v_0)^2}=5.5\\\\(v_0)^2=\frac{481}{5.5}\\ \\(v_0)^2=87.45\\\\v_0=\sqrt{87.45}=9.35\ m/s.

Plugging this value in

t=\frac{7}{v_0cos(45)}\\ \\t=\frac{7}{9.35\times 0.707}\\ \\t=\frac{7}{6.611}

t=1.06\ seconds

So, the time of flight of the ball is 1.06 seconds.

You might be interested in
What does Kepler's first law of planetary motion imply?
BlackZzzverrR [31]

<u>Answer:</u>

The correct answer option is D.  The distance between the planet and the Sun changes as the planet orbits the sun.

<u>Explanation:</u>

Kepler’s laws of planetary motion, derived by the German astronomer Johannes Kepler, are the laws of physics that describe the motions of the planets in the solar system.

According to the Kepler's first law of planetary motion: the path on which the planets orbit around the sun is elliptical in shape, with the center of the sun at one focus.

Therefore, the distance between the Sun and the planets vary as the planet orbit around the sun.

6 0
3 years ago
Describe the climate, landforms,and existing plant and animal life during the cretaceous period
Fiesta28 [93]
The climate<span> was generally warmer and more humid than today, probably because of very active volcanism associated with unusually high rates of seafloor spreading. 
</span><span>The first placental mammals appeared at the beginning of the Cretaceous. The Cretaceous saw the rise and extinction of the toothed birds, Hesperornis and Ichthyornis. The earliest fossils of birds resembling loons, grebes, cormorants, pelicans, flamingos, ibises, rails, and sandpipers were from the Cretaceous.</span>
8 0
3 years ago
Read 2 more answers
How does the function of the parts of the system contribute to its function as a whole
oksano4ka [1.4K]
Answer and explanation: Just as the organs in an organ system work together to accomplish their task, so the different organ systems also cooperate to keep the body running. For example, the respiratory system and the circulatory system work closely together to deliver oxygen to cells and to get rid of the carbon dioxide the cells produce.
4 0
2 years ago
Which of Newton’s laws of accounts for the following statement?
Neko [114]
The answer is B


second law
4 0
3 years ago
1. What is the kinetic energy of a 1.75 kg ball travelling at a speed of 54 m/s?
Over [174]

Answer:

We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.

Explanation:

Given

  • Mass m = 1.75 kg
  • Velocity v = 54 m/s

To determine

Kinetic Energy (K.E) = ?

We know that a body can possess energy due to its movement — Kinetic Energy.

Kinetic Energy (K.E) can be determined using the formula

K.E=\frac{1}{2}mv^2

where

  • m is the mass (kg)
  • v is the velocity (m/s)
  • K.E is the Kinetic Energy (J)

now substituting m = 1.75, and v = 54 in the formula

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}\left(1.75\right)\left(54\right)^2

K.E=1458\times 1.75

K.E=2551.5 J

Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.

7 0
3 years ago
Other questions:
  • From the lab iodine clock reaction: explain the reason this result by comparing what is involved in changing Fe2+ into Fe 3+ to
    10·1 answer
  • If a 40 kg gymnast and a 400 kg sumo wrestler each dropped from 1 m above the trampoline, find the final position of each athlet
    6·1 answer
  • A car is moving 18 m/s to the eat. If it takes the car 5 seconds to reach a velocity of 19 m/s to the east, what is its accelera
    6·1 answer
  • If A is the area of a circle with radius r and the circle expands as time passes, find dA/dt in terms of dr/dt. dA dt = dr dt (b
    5·2 answers
  • When a substance goes directly from a gaseous state to a solid state as dry ice does
    5·2 answers
  • A falling back in mid air has what
    14·1 answer
  • What movement allows us to move our side to side?
    7·1 answer
  • Jill is pushing a box across the floor. Which represents the upward force perpendicular to the floor?
    10·1 answer
  • What is the force exerted on a charge of 2. 5 µC moving perpendicular through a magnetic field of 3. 0 × 102 T with a velocity o
    5·1 answer
  • True or false: the most appropriate weights to use in the wacc are book value weights.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!