Answer:
To the right
Explanation:
Step 1: Given data
- Partial pressure of PCl₅ (pPCl₅) = 0.548 atm
- Partial pressure of PCl₃ (pCl₃) = 0.780 atm
- Partial pressure of Cl₂ (pCl₂) = 0.780 atm
Step 2: Write the balanced equation
PCl₅(g) ⇄ PCl₃(g) + Cl₂(g)
Step 3: Calculate the pressure reaction quotient

Step 4: Determine whether the reaction proceeds to the right or to the left as equilibrium is approached
Since <em>Qp < Kp</em>, the reaction will proceed to the right to attain the equilibrium.
C is the answer i believe
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>
Manipulation of the independent variable should change the dependent variable, the value of which "depends" on the independent variable's change in value.