Answer:
F = 8849 N
Explanation:
Given:
Load at a given point = F = 4250 N
Support span = L = 44 mm
Radius = R = 5.6 mm
length thickness of tested material = 12 mm
First compute the flexural strength for circular cross section using the formula below:
σ![_{fs} = F_{f} L / \pi R^{3}](https://tex.z-dn.net/?f=_%7Bfs%7D%20%3D%20F_%7Bf%7D%20L%20%2F%20%5Cpi%20%20R%5E%7B3%7D)
σ = FL / π R³
Putting the given values in the above formula:
σ = 4250 ( 44 x 10⁻³ ) / π ( 5.6 x 10⁻³ ) ³
= 4250 ( 44 x 10⁻³ ) / 3.141593 ( 5.6 x 10⁻³ ) ³
= 4250 (44 x 1
/1000
)) / 3.141593 ( 5.6 x 10⁻³ ) ³
= 4250 ( 11 / 250 ) / 3.141593 ( 5.6 x 10⁻³ ) ³
= 187 / 3.141593 ( 5.6 x 1 / 1000 )
³
= 187 / 3.141593 (0.0056)³
= 338943767.745358
= 338.943768 x 10⁶
σ = 338 x 10⁶ N/m²
Now we compute the load i.e. F from the following formula:
= 2 σ
d³/3 L
F = 2σd³/3L
= 2(338 x 10⁶)(12 x 10⁻³)³ / 3(44 x 10⁻³)
= 2 ( 338 x 1000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)
= 2 ( 338000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)
= 676000000 ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)
= 676000000 ( 12 x 1/1000 )³ / 3 ( 44 x 10⁻³)
= 676000000 ( 3 / 250 )³ / 3 ( 44 x 10⁻³)
= 676000000 ( 27 / 15625000 ) / 3 ( 44 x 10⁻³)
= 146016 / 125 / 3 ( 44 x 1 / 1000 )
= ( 146016 / 125 ) / (3 ( 11 / 250 ))
= 97344 / 11
F = 8849 N