1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
12

A certain heat pump produces 200 kW of heating for a 293 K heated zone while only using 75 kW of power and a heat source at 273

K. Calculate the COP of this device as well as the theoretical maximum COP
Engineering
1 answer:
vodka [1.7K]3 years ago
8 0

Answer:

COP(heat pump) = 2.66

COP(Theoretical maximum) = 14.65

Explanation:

Given:

Q(h) = 200 KW

W = 75 KW

Temperature (T1) = 293 K

Temperature (T2) = 273 K

Find:

COP(heat pump)

COP(Theoretical maximum)

Computation:

COP(heat pump) = Q(h) / W

COP(heat pump) = 200 / 75

COP(heat pump) = 2.66

COP(Theoretical maximum) = T1 / (T1 - T2)

COP(Theoretical maximum) = 293 / (293 - 273)

COP(Theoretical maximum) = 293 / 20

COP(Theoretical maximum) = 14.65

You might be interested in
Determine the magnitude and the location of the hydrostatic force on the 2m by 4 m vertical rectangular gate shown in Figure P3.
melisa1 [442]

i just need point to ask a question

5 0
3 years ago
In an experiment, the local heat transfer over a flat plate were correlated in the form of local Nusselt number as expressed by
Stells [14]

Answer:

\dfrac{\bar{h}}{h}=\dfrac{5}{4}

Explanation:

Given that

Nu_x=0.035Re_x^{0.8} Pr^{1/3}

We know that

Rex=ρvx/μ

So

Nu_x=0.035Re_x^{0.8} Pr^{1/3}

Nu_x=0.035\times\left(\dfrac{\rho vx}{\mu}\right)^{0.8}Pr^{1/3}

All other quantities are constant only x is a variable in the above equation .so lets take all other quantities as a constant C

Nu_x=C.x^{0.8}=C.x^{4/5}

We also know that

Nux=hx/K

C.x^{4/5}=\dfrac{hx}{k}

m is the constant

h=mx^{-1/5}

This is local heat transfer coefficient

The average value of h given as

\bar{h}=\dfrac{\int_{0}^{L}hdx}{L}

\bar{h}=\dfrac{5m}{4}\times\dfrac{L^{4/5}}{L}

\bar{h}=\dfrac{5m}{4}L^{-1/5}             ---------1

The value of local heat transfer coefficient at x=L

h=mx^{-1/5}

h=mL^{-1/5}            -----------2

From 1 and 2 we can say that

\dfrac{\bar{h}}{h}=\dfrac{5}{4}

8 0
3 years ago
A heat pump designer claims to have an air-source heat pump whose coefficient of performance is 1.8 when heating a building whos
Anit [1.1K]

Answer:

The claim is valid.

Explanation:

Let assume that heat pump is reversible. The coefficient of performance for the heat pump is:

COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}

COP_{HP} = \frac{300\,K}{300\,K-260\,K}

COP_{HP} = 7.5

The claim is valid as real heat pumps have lower coefficients of performance.

3 0
3 years ago
The solid cylinders AB and BC are bonded together at B and are attached to fixed supports at A and C. The modulus of rigidity is
romanna [79]

Answer:

a) 0.697*10³ lb.in

b) 6.352 ksi

Explanation:

a)

For cylinder AB:

Let Length of AB = 12 in

c=\frac{1}{2}d=\frac{1}{2} *1.1=0.55in\\ J=\frac{\pi c^4}{2}=\frac{\pi}{2}0.55^4=0.1437\ in^4\\

\phi_B=\frac{T_{AB}L}{GJ}=\frac{T_{AB}*12}{3.3*10^6*0.1437}  =2.53*10^{-5}T_{AB}

For cylinder BC:

Let Length of BC = 18 in

c=\frac{1}{2}d=\frac{1}{2} *2.2=1.1in\\ J=\frac{\pi c^4}{2}=\frac{\pi}{2}1.1^4=2.2998\ in^4\\

\phi_B=\frac{T_{BC}L}{GJ}=\frac{T_{BC}*18}{5.9*10^6*2.2998}  =1.3266*10^{-6}T_{BC}

2.53*10^{-5}T_{AB}=1.3266*10^{-6}T_{BC}\\T_{BC}=19.0717T_{AB}

T_{AB}+T_{BC}-T=0\\T_{AB}+T_{BC}=T\\T_{AB}+T_{BC}=14*10^3\ lb.in\\but\ T_{BC}=19.0717T_{AB}\\T_{AB}+19.0717T_{AB}=14*10^3\\20.0717T_{AB}=14*10^3\\T_{AB}=0.697*10^3\ lb.in\\T_{BC}=13.302*10^3\ lb.in

b) Maximum shear stress in BC

\tau_{BC}=\frac{T_{BC}}{J}c=13.302*10^3*1.1/2.2998=6.352\ ksi

Maximum shear stress in AB

\tau_{AB}=\frac{T_{AB}}{J}c=0.697*10^3*0.55/0.1437=2.667\ ksi

8 0
3 years ago
A 3.52 kg steel ball is tossed upward from a height of 6.93 meters above the floor with a vertical velocity of 2.99 m/s. What is
Dafna1 [17]

Answer : The final velocity of the ball is, 12.03 m/s

Explanation :

By the 3rd equation of motion,

v^2-u^2=2as

where,

s = distance covered by the object = 6.93 m

u = initial velocity  = 2.99 m/s

v = final velocity = ?

a = acceleration = 9.8m/s^2

Now put all the given values in the above equation, we get the final velocity of the ball.

v^2-(2.99m/s)^2=2\times (9.8m/s^2)\times (6.93m)

v=12.03m/s

Thus, the final velocity of the ball is, 12.03 m/s

7 0
3 years ago
Other questions:
  • Marcelo es muy bueno resolviendo adivinanzas y acertijos. Por eso, estaba totalmente disgustado cuando se dio cuenta de que no e
    12·1 answer
  • Thermal conductivity of AISI 316 Stainless Steel at 90ºC is 14.54 W/m K. Convert this value to IP system.
    8·1 answer
  • HELP PLEASE<br> this is for drivers ed btw
    5·1 answer
  • Question 11 (1 point)
    12·1 answer
  • Basic output with variables (Java) This zyLab activity is intended for students to prepare for a larger programming assignment.
    7·1 answer
  • A chemistry student accidentally drops a large mercury thermometer and it breaks. The thermometer contained 2 grams of mercury (
    13·1 answer
  • A common chef's knife is single-beveled.<br> TRUE<br> FALSE
    10·1 answer
  • How many millimeters are there in a centimeter?
    10·1 answer
  • Orbit is to _____ as altitude is to _____.
    13·2 answers
  • What do you mean by overflow and underflow error in array?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!