1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
3 years ago
14

What must you do if hauling a load of material which could fall or blow onto the roadway?

Engineering
1 answer:
FromTheMoon [43]3 years ago
7 0

Most likely, what you must do is secure the load that you want to carry. This is extremely important if you want to haul a load of garbage in the back of your car. Securing your load properly will ensure that none of it ends up on the road, polluting the environment. This will also ensure that the garbage does not fall off the truck and hit other cars or drivers.

You might be interested in
A compound machine contains three simple machines with IMAs of 2, 4 and 5, respectively. What is the overall ideal mechanical ad
anygoal [31]

Answer:

Overall ideal mechanical advantage of the machine = 40

Explanation:

Given:

Ideal mechanical advantage of three machine = 2, 4, 5

Find:

Overall ideal mechanical advantage of the machine

Computation:

Overall ideal mechanical advantage of the machine = 2 × 4× 5

Overall ideal mechanical advantage of the machine = 40

3 0
3 years ago
If a front gear had 24 teeth, and a rear gear has 12 teeth:
zubka84 [21]

Answer:

  4 times around

Explanation:

The total number of teeth involved will be the same for each gear. If the front gear is connected to the pedal and it goes around twice, then 2·24 = 48 teeth will have passed the reference point.

If the rear gear is attached to the wheel, and 48 teeth pass the reference point, then it will have made ...

  (48 teeth)/(12 teeth/turn) = 4 turns

4 0
3 years ago
A car is traveling at sea level at 78 mi/h on a 4% upgrade before the driver sees a fallen tree in the roadway 150 feet away. Th
Dmitrij [34]

Answer: V = 47.7 mi/hr

Explanation:

first we calculate elements of aero-dynamic resistance

Ka = p/2 * CD * A.f

p is the density of air(0.002378 slugs/ft^3) for zero altitude, CD is the drag coefficient(0.35) and A.f is the front region of the vehicle

so we substitute

Ka = 0.002378/2 * 0.35 * 18

Ka = 0.00749

Now we calculate the final speed of the vehicle (V2) using the relation;

S = (YbW/2gKa)In[ (UW + KaV1^2 + FriW ± Wsinθg) / (UW + KaV2^2 + FriW ± Wsinθg)

so

WE SUBSTITUTE

150 = (1.04 * 2700 / 2 * 32.2 * 0.0075) In [(0.8 * 2700 + 0.0075 *(78mil/hr * 5280ft/1min * 1hr/3600s)^2 + 0.017 * 2700 ± 2700 * 0.04) / (0.8 * 2700 + 0.0075 * V2^2 + 0.017 * 2700 ± 2700 * 0.04)]

150 = (2808/0.483) In [(2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

150 = 5813.66 In [ (2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

divide both sides by 5813.66

0.0258 = In [ (2412.06) / ( 0.0075V2^2 + 2313.9)]

take the e^ of both side

e^0.0258 = (2412.06) / ( 0.0075V2^2 + 2313.9)

1.0261 = (2412.06) / ( 0.0075V2^2 + 2313.9)]

(0.0075V2^2 + 2313.9) = 2412.06 / 1.0261

(0.0075V2^2 + 2313.9) = 2350.7

0.0075V2^2 = 2350.7 - 2313.9

0.0075V2^2 = 36.8

V2^2 = 36.8 / 0.0075

V2^2 = 4906.6666

V2 = √4906.6666

V2 = 70.0476 ft/s

converting to miles per hour

V2 = 70.0476 ft/s * 1 mil / 5280 ft * 3600s / 1hr

V = 47.7 mi/hr

8 0
3 years ago
The 150-lb man sits in the center of the boat, which has a uniform width and a weight per linear foot of 3 lb>ft. Determine t
irina1246 [14]

Answer:

M = 281.25 lb*ft

Explanation:

Given

W<em>man</em> = 150 lb

Weight per linear foot of the boat: q = 3 lb/ft

L = 15.00 m

M<em>max</em> = ?

Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):

∑ Fy = 0  (+↑)     ⇒    q'*L - W - q*L = 0

⇒       q' = (W + q*L) / L

⇒       q' = (150 lb + 3 lb/ft*15 ft) / 15 ft

⇒       q' = 13 lb/ft   (+↑)

The free body diagram of the boat is shown in the pic.

Then, we apply the following equation

q(x) = (13 - 3) = 10   (+↑)

V(x) = ∫q(x) dx = ∫10 dx = 10x   (0 ≤ x ≤ 7.5)

M(x) = ∫10x dx = 5x²  (0 ≤ x ≤ 7.5)

The maximum internal bending moment occurs when x = 7.5 ft

then

M(7.5) = 5(7.5)² = 281.25 lb*ft

8 0
3 years ago
What is the relationship of waste management and bioremediation?
andriy [413]

Answer:

In the simplest terms, bioremediation is a waste management process using live organisms to neutralize or remove harmful pollutants from contaminated areas. Bioremediation is an environmental science that amplifies natural biological actions to remedy or remediate polluted groundwater and contaminated soil.

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • A level loop began and closed on BM_A (elevation = 823.368 ft). The plus and minus sights were kept approximately equal. Reading
    11·1 answer
  • Who is responsible for conducting a hazard assessment?
    8·1 answer
  • Air at 2.5 bar, 400 K is extracted from a main jet engine compressor for cabin cooling. The extracted air enters a heat exchange
    14·2 answers
  • What are the 2 reasons an alignment should be done?
    13·1 answer
  • Which statement concerning symbols used on plans is true?
    10·1 answer
  • Sam, a carpenter, is asked to identify the abilities he has that are important to his work. What are the top abilities he might
    9·2 answers
  • What is the maximum value of the bending stress at the critical cross-section?
    14·1 answer
  • Find the value of P(-1.5≤Z≤2)
    12·1 answer
  • Which symbol should be used for the given scenario?
    11·1 answer
  • 3. (5%) you would like to physically separate different materials in a scrap recycling plant. describe at least one method that
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!