Answer:
metals, composite, ceramics and polymers.
Explanation:
The four categories of engineering materials used in manufacturing are metals, composite, ceramics and polymers.
i) Metals: Metals are solids made up of atoms held by matrix of electrons. They are good conductors of heat and electricity, ductile and strong.
ii) Composite: This is a combination of two or more materials. They have high strength to weight ratio, stiff, low conductivity. E.g are wood, concrete.
iii) Ceramics: They are inorganic, non-metallic crystalline compounds with high hardness and strength as well as poor conductors of electricity and heat.
iv) Polymers: They have low weight and are poor conductors of electricity and heat
Well this question is though because we have never seen such a thing ! and to be quite frank when that happens , nothing good comes from it. Black Holes
Answer: Hello the question is incomplete below is the missing part
Question: determine the temperature, in °R, at the exit
answer:
T2= 569.62°R
Explanation:
T1 = 540°R
V2 = 600 ft/s
V1 = 60 ft/s
h1 = 129.0613 ( value gotten from Ideal gas property-air table )
<em>first step : calculate the value of h2 using the equation below </em>
assuming no work is done ( potential energy is ignored )
h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778
∴ h2 = 136.17 Btu/Ibm
From Table A-17
we will apply interpolation
attached below is the remaining part of the solution
Answer:
While calculating the stresses in a body since we we assume a constant distribution of stress across a cross section if the body is loaded along the centroid of the cross section , this assumption of uniformity is assumed only on the basis of Saint Venant's Principle.
Saint venant principle states that the non uniformity in the stress at the point of application of load is only significant at small distances below the load and depths greater than the width of the loaded material this non uniformity is negligible and hence a uniform stress distribution is a reasonable and correct assumption while solving the body for stresses thus greatly simplifying the analysis.
La altura es de 169.4 metros.
Dado que las dos torres que sostienen un puente colgante tienen una separación de 240m y una altura de 110m a partir de la carretera, si el cable tensor más corto mide 10m, para determinar cuál es altura de un cable que se encuentra a 100m de distancia del centro se debe realizar los siguientes cálculos, aplicando la ecuación parabólica:
- (240)² = 4P x (110-10)
- 57600 = 4P x 100
- 57600 = 400P
- 57600/400 = P
- 144 = P
- 200 x 200 = 4 x 144 x (Altura - 100)
- 40000 = 576Altura - 57600
- 40000 + 57600 / 576 = Altura
-
169.4 metros = Altura
Por lo tanto, la altura es de 169.4 metros.
Aprende más en brainly.com/question/20333463