Answer:
Hold the tape in place and go down to the end.
Explanation:
Answer:

So, Ma < 1 Flow is Subsonic
Explanation:
Mach Number:
Mach Number is the ratio of speed of the object to the speed of the sound. It is used to categorize the speed of the object on the basis of mach number as sonic, supersonic and hyper sonic. (It is a unit less quantity)
Mach < 1 Subsonic
Mach > 1 Supersonic
Ma= Speed of the object/Speed of the sound

So, Ma < 1 Flow is Subsonic
Answer:
speed by mass attain is 55.86 m/s
Explanation:
given data
glucose = 10 g
mass = 100 kg
to find out
speed by mass attain
solution
we know glucose have 180 g molecular weight and
that 1 g glucose produce energy = 2816/180 × 10³ J
so here 10 g of glucose produce energy = 1.56 ×
J
so here energy release = 1/2 × mv²
1.56 ×
= 1/2 × (100)v²
v² = 3.12 × 10³
and v = 55.86 m/s
so speed by mass attain is 55.86 m/s
Answer: The overhead percentage is 7.7%.
Explanation:
We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.
We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.
So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:
OH % = (58 / 758) * 100 = 7.7 %
Answer:
Electroosmotic velocity will be equal to 
Explanation:
We have given applied voltage v = 100 volt
Length of capillary L = 5 mm = 0.005 m
Zeta potential of the capillary surface 
Dielectric constant of glass is between 5 to 10 here we are taking dielectric constant as 
Viscosity of glass is 
Electroosmotic velocity is given as 

So Electroosmotic velocity will be equal to 