Answer:
<u><em>Circular motion requires a net inward or "centripetal" force. Without a net centripetal force, an object cannot travel in circular motion. In fact, if the forces are balanced, then an object in motion continues in motion in a straight line at constant speed.</em></u>
Explanation:
Answer:
the earth isn't a cracked hard boiled egg, but I'd guess they mean layers. A thin shell/crust and the yolk and whites of the egg represent layers of the earth
Explanation:
1. Find the force of friction between the sports car and the station wagon stuck together and the road. The total mass m = 1928kg + 1041kg = 2969kg. The only force in the x-direction is friction: F = μ*N = μ * m * g
2. Find the acceleration due to friction:
F = m*a = μ * m * g => a = μ * g = 0.6 * 9.81
3. Find the time it took the two cars stuck together to slide 12m:
x = 0.5*a*t²
t = sqrt(2*x / a) = sqrt(2 * x / (μ * g) )
4. Find the initial velocity of the two cars:
v = a*t = μ * g * sqrt(2 * x / (μ * g) ) = sqrt( 2 * x * μ * g)
5. Use the initial velocity of the two cars combined to find the velocity of the sports car. Momentum must be conserved:
m₁ mass of sports car
v₁ velocity of sports car before the crash
m₂ mass of station wagon
v₂ velocity of station wagon before the crash = 0
v velocity after the crash
m₁*v₁ + m₂*v₂ = (m₁+m₂) * v = m₁*v₁
v₁ = (m₁+m₂) * v / m₁ = (m₁+m₂) * sqrt( 2 * x * μ * g) / m₁
v₁ = 33.9 m/s
Answer:
a) P1+P2
Explanation:
The magnitude of their combined momentum is just the addition of each momentum, because in this case of inelastic collision, the kinetic energy of the two cars are both converted to some form of energy because the velocity of both cars becomes zero, i.e., V=0, making P = mv = 0, this means the magnitude of P1 + P2 = 0.