Answer:
required distance is 233.35 m
Explanation:
Given the data in the question;
Sound intensity
= 1.62 × 10⁻⁶ W/m²
distance r = 165 m
at what distance from the explosion is the sound intensity half this value?
we know that;
Sound intensity
is proportional to 1/(distance)²
i.e
∝ 1/r²
Now, let r² be the distance where sound intensity is half, i.e
₂ =
₁/2
Hence,
₂/
₁ = r₁²/r₂²
1/2 = (165)²/ r₂²
r₂² = 2 × (165)²
r₂² = 2 × 27225
r₂² = 54450
r₂ = √54450
r₂ = 233.35 m
Therefore, required distance is 233.35 m
The gravitational force between two objects is given by

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
In this problem,

,

and

, therefore the gravitational force between the two objects is
Because the more advances made in the world means the more we can learn on how things work and how we can better the lives of humans and other species. If we didn't have scientific advancements we wouldn't have cell phones, electric, tv, car, computers, ect. We would still be living in Cave man era with clubs and horrible language skills.
Answer:

Explanation:
The acceleration of a circular motion is given by

where
is the angular velocity and
is the radius.
Angular velocity is related to the period, T, by

Substitute into the previous formula.


This acceleration does not depend on the linear or angular displacement. Hence, the amount of rotation does not change it.