Answer: 8 meters per second
Explanation: If you add 60 to 20 you get 80 meters and since he ran those 80 meters in 10 seconds you divide 80 by ten and get 8 and then you get 8m/s
Answer:
hey...................................
Answer:
Therefore the escape velocity from Mar's gravity is
m/s.
Explanation:
Escape velocity: Escape velocity is a the minimum velocity that a object needs to escape from the gravitational field of massive body.

Escape velocity
G=Universal gravitational constant = 6.673×10⁻¹¹N m²/Kg²
M= mass of Mars = 6.42×10²³ kg
R = Radius of the Mars = 3.40×10³m
The escape velocity does not depend on the velocity of a object.

m/s
Therefore the escape velocity from Mar's gravity is
m/s.
The answer is: [C]: Neither Juan nor Christina are correct.
_________________________________________________
Explanation:
_____________
Consider Juan's statement:
_______________________
"Juan said fossils deposits always contain only one type of organism."
__________________________
This statement is incorrect. There are many instances of fossil deposits containing more than one type of organism.
___________________________________
Consider Christina's statement.
___________________________________
"Christina said fossil deposits never contain one type of organism."
___________________________________________
This statement is incorrect. Fossil deposits, by definition (of "fossil") ALWAYS contain <u>at least one type</u> of organism.
___________________________________________
As such, neither Juan nor Christina are correct.
And as such, Answer choice: [C] is the correct answer.
_____________________
Answer choices A, B, and D are ruled out.
Answer:
1.6 m
Explanation:
Given that the launch velocity of a toy car launcher is determined to be 5 m/s. If the car is to be launched from a height of 0.5 m.
The time for landing should be calculated by using the second equation of motion formula
h = Ut + 1/2gt^2
Let U = 0
0.5 = 1/2 × 9.8 × t^2
0.5 = 4.9t^2
t^2 = 0.5 / 4.9
t^2 = 0.102
t = 0.32 s
The target should be placed so that the toy car lands on it at:
Distance = 5 × 0.32
distance = 1.597 m
Distance = 1.6 m
Therefore, the target should be placed so that the toy car lands on it 1.6 metres away.