The acceleration of the train at the give initial and final velocity is determined as 10.5 m/s².
<h3>Acceleration of the train</h3>
The acceleration of the train is calculated as follows;
a = Δv/t
where;
- u is initial velocity = 162 km/hr = 45 m/s
- v is final velocity of the car = 540 km/hr = 150 m/s
a = (150 - 45)/10
a = 10.5 m/s²
Thus, the acceleration of the train at the give initial and final velocity is determined as 10.5 m/s².
Learn more about acceleration here: brainly.com/question/605631
#SPJ1
Answer:
A. 
B. 
C. ΔK
Explanation:
From the exercise we know that the car and the truck are traveling eastward. I'm going to name the car 1 and the truck 2

A. Since the two vehicles become entangled the final mass is:

From linear momentum we got that:




B. The change in velocity of both vehicles are:
For the car

For the truck

C. The change in kinetic energy is:
ΔK=
ΔK=
ΔK
The distance between Mars and the Sun in the scale model would be 1140 m
Explanation:
In this scale model, we have:
represents an actual distance of

The actual distance between Mars and the Sun is 228 million km, therefore

On the scale model, this would corresponds to a distance of
.
Therefore, we can write the following proportion:

And solving for
, we find:

Learn more about distance:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
1. will blow because the total current in this circuit is 14 A which is greater than 12 A.
Explanation:
According to Kirchoff current law (KCL) which states that the total current flowing in a circuit is equal to the sum of the individual branch current.
If the supply current is greater than the sum of the individual branch current, then the load will collapse or blow off.
In the question given, the total current of the fuse is 12A
Sum of branch currents = current in branch 1 + current in branch 2
= 8A+6A
= 14A
As we can see that the supply current is lower than the sum of the branch current, this will cause the fuse to blow because some of the branch current will be sent back on the fuse and thereby causing the fuse to blow.
<span>Answer:
initial I = (m/2)L²/3 + (m/2)L²
where L = ½ the length of the rod, and the vertical half can be treated as a point mass.
initial I = mL²(1/6 + 1/2) = 2mL²/3
final I = m(2L)²/3 = 4mL²/3
Since I has doubled and momentum is conserved, ω has halved.
ω = 3.9 rad/s.
By formulae: 2mL²/3 * 7.8rad/s = 4mL²/3 * ω</span>