Answer:
5,878,625,370,000 miles or 5.87 Trillion miles
Explanation:
The result: One light-year equals 5,878,625,370,000 miles (9.5 trillion km).
Answer:
g ≈ 7.4 m/s²
Explanation:
The acceleration due to gravity on planet XX is ...
g = GM/r² = (6.67·10^-11 × 4·10^22)/(6·10^5)^2
g ≈ 7.4 m/s²
B. I belive :)
Hopes this helps
Answer:
Work done = -220,000 Joules.
Explanation:
<u>Given the following data;</u>
Mass = 1100kg
Initial velocity = 20m/s
To find workdone, we would calculate the kinetic energy possessed by the car.
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where,
- K.E represents kinetic energy measured in Joules.
- M represents mass measured in kilograms.
- V represents velocity measured in metres per seconds square.
Substituting into the equation, we have;
K.E = 220,000J
Therefore, the workdone to bring the car to rest would be -220,000 Joules because the braking force is working to oppose the motion of the car.
Answer:
6666.67 Newtons
Explanation:
The formula F=ma (force is equal to mass multiplied by acceleration) can be used to calculate the answer to this question.
In this case:
- mass= 0.1mg= 1*10^-7 kg
- velocity= 4.00*10^3 m/s
- time= 6.00*10^-8 s
Using velocity and time, acceleration can be calculated as:
Substituting these values into the formula F=ma, the answer is:
- F= (1*10^-7)kg * (6.667*10^10) m/s²
- F= 6666.67 Newtons of force