1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lisa [10]
3 years ago
6

How liquids are drown in to syringe tube when the plunger is pulled out?​

Physics
1 answer:
jeka943 years ago
4 0

Answer:

Fluid, such as a drug or blood, is drawn up through a hollow needle into the main tube when the plunger handle is pulled back. As long as the needle tip remains in the fluid while the plunger handle is pulled, air will not enter.

I hope it's helpful!

You might be interested in
An electron is released from rest at a distance of 6.00 cm from a proton. If the proton is held in place, how fast will the elec
lana66690 [7]

Answer:

91.87 m/s

Explanation:

<u>Given:</u>

  • x = initial distance of the electron from the proton = 6 cm = 0.06 m
  • y = initial distance of the electron from the proton = 3 cm = 0.03 m
  • u = initial velocity of the electron = 0 m/s

<u>Assume:</u>

  • m = mass of an electron = 9.1\times 10^{-31}\ kg
  • v = final velocity of the electron
  • e = magnitude of charge on an electron = 1.6\times 10^{-19}\ C
  • p = magnitude of charge on a proton = 1.6\times 10^{-19}\ C

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.

Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.

\therefore \textrm{Kinetic energy change}= \textrm{Change in potential energy}\\\Rightarrow \dfrac{1}{2}m(v^2-u^2)= \dfrac{kpe}{y}-\dfrac{kpe}{x}\\\Rightarrow \dfrac{1}{2}m(v^2-(0)^2)= \dfrac{kpe}{0.03}-\dfrac{kpe}{0.06}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{3}-\dfrac{100kpe}{6}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{6}\\

\Rightarrow v^2= \dfrac{100kpe\times 2}{6m}\\\Rightarrow v^2= \dfrac{100kpe}{3m}\\\Rightarrow v^2= \dfrac{100\times 9\times 10^9\times 1.6\times 10^{-19}\times 1.6\times 10^{-19}}{3\times 9.1\times 10^{-31}}\\\Rightarrow v^2=8.44\times 10^3\\\Rightarrow v=91.87\ m/s\\

Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.

8 0
3 years ago
1. The term that describes where the supply curve intersects the demand curve is known as
nadezda [96]
Equilibrium is the answer
6 0
3 years ago
Usa test prep- Look at the picture below to answer. If u answer correctly i will mark you as brainliest!
Vladimir [108]

Answer:

A

Explanation:

The greatest concentration of atomic mass is in the nucleus because it is made up of protons and neutrons. The electrons surrounding the nucleus don't have as much mass as protons or neutrons.

Hopefully this helps...

4 0
3 years ago
Read 2 more answers
How many meters are there in 4.80 ly ?
Masja [62]
Since each light year is approximately 9 trillion kilometres, 4.80 light years is 43.2 trillion kilometres, or 43,200,000,000,000,000 metres
6 0
3 years ago
A-10A twin-jet close-support airplane is approximately rectangular with a wingspan (the length perpendicular to the flow directi
Sidana [21]

Solution :

Given :

Rectangular wingspan

Length,L = 17.5 m

Chord, c = 3 m

Free stream velocity of flow, $V_{\infty}$ = 200 m/s

Given that the flow is laminar.

$Re_L=\frac{\rho V L}{\mu _{\infty}}$

      $=\frac{1.225 \times 200 \times 3}{1.789 \times 10^{-5}}$

    $= 4.10 \times 10^7$

So boundary layer thickness,

$\delta_{L} = \frac{5.2 L}{\sqrt{Re_L}}$

$\delta_{L} = \frac{5.2 \times 3}{\sqrt{4.1 \times 10^7}}$

    = 0.0024 m

The dynamic pressure, $q_{\infty} =\frac{1}{2} \rho V^2_{\infty}$

                                           $ =\frac{1}{2} \times 1.225  \times 200^2$

                                          $=2.45 \times 10^4 \ N/m^2$

The skin friction drag co-efficient is given by

$C_f = \frac{1.328}{\sqrt{Re_L}}$

     $=\frac{1.328}{\sqrt{4.1 \times 10^7}}$

     = 0.00021

$D_{skinfriction} = \frac{1}{2} \rho V^2_{\infty}S C_f$

                  $=\frac{1}{2} \times 1.225 \times 200^2 \times 17.5 \times 3 \times 0.00021$

                  = 270 N

Therefore the net drag = 270 x 2

                                      = 540 N

7 0
2 years ago
Other questions:
  • Kinetic Energy RE-
    11·1 answer
  • Calculate the pressure on the bottom of a swimming pool 3. 5 m deep. How does the pressure compare with atmospheric pressure, 10
    11·1 answer
  • An astronaut notices that a pendulum which took 2.45 s for a complete cycle of swing when the rocket was waiting on the launch p
    6·1 answer
  • Apparatus
    7·1 answer
  • What do submarines translate into pictures?
    11·1 answer
  • If a wave is traveling 100 m/s and has the wavelength of .002, what is the frequency of the wave?
    11·1 answer
  • What is one advantage of doing a feild experiment instead of a lobortory expirament
    6·1 answer
  • Which kind of wave interaction is shown?
    7·1 answer
  • What is gravitonal force
    15·1 answer
  • Does a wheel barrow have mechanical advantage???
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!