A point in geometry is a location.
It has no size, width, length or depth. A point is shown by a dot. A line is defined as a line of points that extends infinitely in two directions.
Answer:
yes
Step-by-step explanation:
All of the opposite sides are parallel to each other.
Answer:
y = 15x + 200
Step-by-step explanation:
It should be y = 150x + 200 because if you look at the first one, 300x is too big.
You can cross out the last two.
Then you can see the second one also doesn't work.
Cross that one out.
The first choice is the only one.
Answer:
No, According to triangle Inequality theorem.
Step-by-step explanation:
Given:
Length given are 4 in., 5 in., 1 in.
We need to check whether with these lengths we can create triangular components.
The Triangle Inequality Theorem states that the sum of any 2 sides of a triangle must be greater than the measure of the third side.
These must be valid for all three sides.
Hence we will check for all three side,
4 in + 5 in > 1 in. (It is a Valid Condition)
1 in + 5 in > 4 in. (It is a Valid Condition)
4 in + 1 in > 5 in. (It is not a Valid Condition)
Since 2 condition are valid and 1 condition is not we can say;
A triangular component cannot be created with length 4 in, 5 in, and 1 in by using triangle inequality theorem (since all three conditions must be valid).
We know, that the <span>area of the surface generated by revolving the curve y about the x-axis is given by:

In this case a = 0, b = 15,

and:

So there will be:


![\left(\star\right)=\dfrac{2\pi}{15}\cdot\int\limits_0^{15}x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\, dx=\dfrac{2\pi}{15}\cdot\dfrac{25}{6}\cdot\left[\left(1+\dfrac{x^4}{25}\right)^\frac{3}{2}\right]_0^{15}=\\\\\\= \dfrac{5\pi}{9}\left[\left(1+\dfrac{15^4}{25}\right)^\frac{3}{2}-\left(1+\dfrac{0^4}{25}\right)^\frac{3}{2}\right]=\dfrac{5\pi}{9}\left[2026^\frac{3}{2}-1^\frac{3}{2}\right]=\\\\\\= \boxed{\dfrac{5\Big(2026^\frac{3}{2}-1\Big)}{9}\pi}](https://tex.z-dn.net/?f=%5Cleft%28%5Cstar%5Cright%29%3D%5Cdfrac%7B2%5Cpi%7D%7B15%7D%5Ccdot%5Cint%5Climits_0%5E%7B15%7Dx%5E3%5Ccdot%5Csqrt%7B1%2B%5Cdfrac%7Bx%5E4%7D%7B25%7D%7D%5C%2C%5C%2C%20dx%3D%5Cdfrac%7B2%5Cpi%7D%7B15%7D%5Ccdot%5Cdfrac%7B25%7D%7B6%7D%5Ccdot%5Cleft%5B%5Cleft%281%2B%5Cdfrac%7Bx%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D_0%5E%7B15%7D%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Cdfrac%7B5%5Cpi%7D%7B9%7D%5Cleft%5B%5Cleft%281%2B%5Cdfrac%7B15%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D-%5Cleft%281%2B%5Cdfrac%7B0%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5Cdfrac%7B5%5Cpi%7D%7B9%7D%5Cleft%5B2026%5E%5Cfrac%7B3%7D%7B2%7D-1%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Cboxed%7B%5Cdfrac%7B5%5CBig%282026%5E%5Cfrac%7B3%7D%7B2%7D-1%5CBig%29%7D%7B9%7D%5Cpi%7D)
Answer C.
</span>