The answer is B. On a sunny day, the air over a lake will be cooler than the air over the bordering land.
Complete Question:
In the same configuration of the previous problem 3, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3.
a) Draw a diagram in a (x,y) plane of the four wires with wire 4 perpendicular to the origin. Indicate the current's directions.
b) Draw a diagram of all magnetic fields produced at the position of wire 3 by the other three currents.
c) Draw a diagram of all magnetic forces produced at the position of wire 3 by the other three currents.
d) What are magnitude and direction of the net magnetic force per meter of wire length on wire 3?
Answer:
force, 1.318 ₓ 10⁻⁴
direction, 18.435°
Explanation:
The attached file gives a breakdown step by step solution to the questions
Answer:
6010.457N
Explanation:
Centripetal acceleration = a= V²/R
At a radius of 3.6m and velocity of 16.12m/s,
Acceleration is
a = 16.12²/ 3.6 = 72.182 m/s²
Force = Mass (m) * Acceleration (a)
36 = m * 72.182
m = 36/72.182
At breaking point
Radius = 0.468 m and Velocity = 75.1 m/s
a = V²/R = 75.1²/0.468
a = 12051.3 m/s
F = Mass(m) * Acceleration (a)
F = m * 12051.3
m = F/ 12051.3
Settings the ratio of mass equal
m = m
=> 36/72.182 = F/12051.3
F = 12051.3 * 36/72.182
F = 6010.457N
Final velocity = 0, thus final kinetic energy is 0
Initial kinetic energy:
0.5mv²
= 0.5 x 0.48 x 4.08²
= 4.0 J
Decrease in kinetic energy = 4 - 0 = 4 Joules
Answer:
A and B are correct both are correct