Answer:
The fraction of its volume inside liquid is increased .
Explanation:
According to principle pf floatation , an object floats on the surface of water
when the weight of liquid displaced by it becomes equal to weight of the object . weight of the liquid depends upon the density of the liquid .
In the second case , when the body is dipped into liquid of lesser density , in order to balance the weight of body , more volume of liquid will be displaced so that weight of displaced liquid becomes equal to object's weight . So the body floats with greater depth inside liquid . The fraction of its volume inside liquid is increased .
Question:
The water molecules now in your body were once part of a molecular cloud. Only about onemillionth of the mass of a molecular cloud is in the form of water molecules, and the mass density of such a cloud is roughly 2.0×10−21 g/cm^3.
Estimate the volume of a piece of molecular cloud that has the same amount of water as your body.
Answer:
The volume of cloud that has the same density as the amount of water in our body is 1.4×10²⁵ cm³
Explanation:
Here, we have mass density of cloud = 2.0×10⁻²¹ g/cm^3
Density = Mass/Volume
Volume = Mass/Density = If the mass is 40 kg and the body is made up of 70% by mass of water, we have
28 kg water = 28000 g
Therefore the Volume = 28 kg/ 2.0×10⁻²¹ g/cm^3 = 1.4×10¹⁹ m³ = 1.4×10²⁵ cm³.
Therefore, the volume of cloud that has the same density as the amount of water in our body = 1.4×10²⁵ cm³.
Answer:
B religious writing
Explanation:
The Vedas are a large body of religious texts originating in ancient India. Composed in Vedic Sanskrit, the texts constitute the oldest layer of Sanskrit literature and the oldest scriptures of Hinduism. Hindus consider the Vedas to be apauruṣeya, which means "not of a man, superhuman" and "impersonal, authorless
Answer:
0.25m/s
Explanation:
Given parameters
m₁ = 5kg
v₁ = 1.0m/s
m₂ = 15kg
v₂ = 0m/s
Unknown:
velocity after collision = ?
Solution:
Momentum before collision and after collision will be the same. For inelastic collision;
m₁v₁ + m₂v₂ = v(m₁ + m₂)
Insert parameters and solve for v;
5 x 1 + 15 x 0 = v (5 + 15 )
5 = 20v
v =
= 0.25m/s