Answer:
change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Explanation:
Let's look for the speed of the car
F = m a
a = F / m
We use kinematics to find lips
v = v₀ + a t
v = v₀ + (F / m) t
The moment is defined by
p = m v
The moment change
Δp = m v - m v₀
Let's replace the speeds in this equation
Δp = m (v₀
+ F / m t) - m v₀
Δp = m v₀ + F t - m v₀
Δp = F t
We see that the change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Answer:W = 1.23×10^-6BTU
Explanation: Work = Surface tension × (A1 - A2)
W= Surface tension × 3.142 ×(D1^2 - D2^2)
Where A1= Initial surface area
A2= final surface area
Given:
D1=0.5 inches , D2= 3 inches
D1= 0.5 × (1ft/12inches)
D1= 0.0417 ft
D2= 3 ×(1ft/12inches)
D2= 0.25ft
Surface tension = 0.005lb ft^-1
W = [(0.25)^2 - (0.0417)^2]
W = 954 ×10^6lbf ft × ( 1BTU/778lbf ft)
W = 1.23×10^-6BTU
Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
Answer:
The pressure at point 2 is 
Explanation:
From the question we are told that
The speed at point 1 is 
The gauge pressure at point 1 is 
The density of water is 
Let the height at point 1 be
then the height at point two will be

Let the diameter at point 1 be
then the diameter at point two will be

Now the continuity equation is mathematically represented as

Here
are the area at point 1 and 2
Now given that the are is directly proportional to the square of the diameter [i.e
]
which can represent as

=> 
where c is a constant
so 
=> 
=> 
Now from the continuity equation
=>
=>

Generally the Bernoulli equation is mathematically represented as

So
=> 
substituting values


<h2>
<u>Required</u><u> </u><u>Answer</u><u>:</u></h2>
The body will <u>stay at rest </u>(Option D). It is because a force of magnitude 50 N is pulled towards left and another force is pulling it towards right with same magnitude 50 N. So, the direction of force is opposite and magnitude is same i.e. 50 N. So, they will cancel each other and net force is 0. Hence, there would be no acceleration.
- Option A - Showing acceleration
- Option B - Showing acceleration
- Option C - Change of direction due to Net force
Hence, these options are incorrect because they are only possible when net external force is non-zero. Staying at rest i.e. Option D means there is no motion and hence no acceleration, this shows that net force is 0
<u>━━━━━━━━━━━━━━━━━━━━</u>