Answer:
I'm not sure but I think it's 4.5 v
Answer:
Wsep = Wmix
Explanation:
When Cream and milk up in a bottle they might appear homogeneous but after the bottle must have settled down for a while i.e kept in a position without shaking the bottle. the contents ( cream and milk ) will be separated. this is because Milk and cream do not mix up just like some other liquids that don't mix-up. Wmix represents the weight of the bottle before separation while Wsep represents the weight after separation. but since both liquids are in the same bottle the weight after separation would remain the same
Wsep = Wmix
Answer:
(a) convex mirror
(b) virtual and magnified
(c) 23.3 cm
Explanation:
The having mirror is convex mirror.
distance of object, u = - 20 cm
magnification, m = 1.4
(a) As the image is magnified and virtual , so the mirror is convex in nature.
(b) The image is virtual and magnified.
(c) Let the distance of image is v.
Use the formula of magnification.

Use the mirror equation, let the focal length is f.

Radius of curvature, R = 2 f = 2 x 11.67 = 23.3 cm
Answer:
1. v = 30 m/s
2. v = 5 m/s
3. f = 40 Hz
4. f = 400 Hz
5. f = 300 Hz
6. λ = 0.772 m
7. λ = 0.386 m
8. λ = 0.625 m
9. v = 100 m/s
10. v = 50 m/s
Explanation:
The relationship between frequency, wavelength, and speed of a wave is given by the following formula:

where,
v = speed of wave
f = frequency of wave
λ = wavelength
1.
f = 100 Hz
λ = 0.3 m
Therefore,
v = (100 Hz)(0.3 m)
<u>v = 30 m/s</u>
<u></u>
2.
f = 50 Hz
λ = 0.1 m
v = (50 Hz)(0.1 m)
<u>v = 5 m/s</u>
<u></u>
3.
v = 20 m/s
λ = 0.5 m

<u>f = 40 Hz</u>
<u></u>
4.
v = 80 m/s
λ = 0.2 m

<u>f = 400 Hz</u>
<u></u>
5.
v = 120 m/s
λ = 0.4 m

<u>f = 300 Hz</u>
<u></u>
6.
v = 340 m/s
f = 440 Hz

<u>λ = 0.772 m</u>
<u></u>
7.
v = 340 m/s
f = 880 Hz

<u>λ = 0.386 m</u>
<u></u>
<u></u>
8.
v = 250 m/s
f = 400 Hz

<u>λ = 0.625 m</u>
<u></u>
9.
f = 50 Hz
λ = 2 m
v = (50 Hz)(2 m)
<u>v = 100 m/s</u>
<u></u>
10.
f = 100 Hz
λ = 0.5 m
v = (100 Hz)(0.5 m)
<u>v = 50 m/s</u>
the answer is True you can convert matter and energy