Hello there! With the values of density and volume, you would be able to find the object's mass.
Density is found by dividing the mass by the volume, so you could place in the values of the density and the volume to get the mass.
For example:
500 = mass/10
The 500 being density and 100 being volume. You would use simple math rules and multiply 10 by 500, and you'd get 5000, therefore using the density and volume values and giving you the mass.
I hope I could help you and have a great day!
Increasing the pressure on a reaction involving reacting gases increases the rate of reaction. Changing the pressure on a reaction which involves only solids or liquids has no effect on the rate.
Answer:
(1) atomic numbers
Explanation:
The observed regularities in the properties of the elements on the periodic table are periodic functions of their atomic numbers.
- Atomic number is the number of protons in an atom.
- The periodic law states that "the properties of elements are a periodic function of their atomic number".
- Elements on the periodic table are arranged based on the atomic numbers they contain.
- The number of positively charged particles in an atom is the atomic number.
Answer: When the reaction reaches equilibrium, the cell potential will be 0.00 V
Explanation:
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time.
The equilibrium is dynamic in nature and the reactions are continuous in nature. Rate of forward reaction is equal to the rate of backward reaction.
The standard emf of a cell is related to Gibbs free energy by following relation:

The Gibbs free energy is related to equilibrium constant by following relation:

For equilibrium 
Thus 

Thus When the reaction reaches equilibrium, the cell potential will be 0.00 V