Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.
Answer:
D.
Explanation:
Hello,
In this case, the isomer of an organic compound is another organic compound having the same molecular formula but different structural formula, thus, the given compound's molecular formula is C₅H₈ since it is an alkyne due to the triple bond. Next, we analyze each option:
A. C₅H₁₂
B. C₅H₁₀
C. C₅H₁₀
D. C₅H₈
For that reason answer is D. based on the molecular formula as well as due to the presence of the triple bond unsaturation (alkyne as well).
Best regards.
Any type of medical scientist works.
Taking into account the definition of molarity, the concentration of the solution is 0.855
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>Molarity of NaCl</h3>
In this case, you have:
- number of moles of NaCl=
1.71 moles (being 58.45 g/mole the molar mass of NaCl) - volume 2 L
Replacing in the definition of molarity:

Solving:
Molarity= 0.855 
Finally, the concentration of the solution is 0.855
.
Learn more about molarity:
<u>brainly.com/question/9324116</u>
<u>brainly.com/question/10608366</u>
<u>brainly.com/question/7429224</u>
Answer:
Mass cannot be created or destroyed
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.