Yes dams are made wider at the bottom because the pressure of the water pressure is greater there
Answer:
The difference in the decibel corresponses to a constant difference in the loudness perceived.
The refore the sound intensity from the orchestra is like 100 times that of the violin.
Explanation:
Answer:
Explanation:
The average pressure at mean sea-level (MSL) in the International Standard Atmosphere (ISA) is 1013.25 hPa, or 1 atmosphere (atm), or 29.92 inches of mercury. Pressure (p), mass (m), and the acceleration due to gravity (g), are related by P = F/A = (m*g)/A, where A is surface area.
Equivalent resistance is also known as the overall resistance.
For resistors in a series circuit, the total resistance is computed using the formula:

In other words, you just add up the resistance of each resistor in the series circuit. In your case you only have two resistors. You have 2Ω and 4Ω. So all you need to do is add that up.


The total resistance of the series circuit is 6Ω
In a parallel circuit you get the total resistance using the formula:

First you get the sum of all fractions and at the end take the reciprocal of the resulting fraction and divide. So let us take your problem into consideration where you have two resistors that have a resistance of 2Ω and 4Ω.




Get the reciprocal of the resulting fraction 3/4 and then divide. The reciprocal of 3/4 is 4/3.
4/3 = 1. 33Ω
So if you compare the equivalent resistance of the two circuits, the series circuit has a higher equivalent resistance.
Answer:
<em>The glider's new speed is 68.90 m/s</em>
Explanation:
<u>Principle Of Conservation Of Mechanical Energy</u>
The mechanical energy of a system is the sum of its kinetic and potential energy. When the only potential energy considered in the system is related to the height of an object, then it's called the gravitational potential energy. The kinetic energy of an object of mass m and speed v is

The gravitational potential energy when it's at a height h from the zero reference is

The total mechanical energy is


The principle of conservation of mechanical energy states the total energy is constant while no external force is applied to the system. One example of a non-conservative system happens when friction is considered since part of the energy is lost in its thermal manifestation.
The initial conditions of the problem state that our glider is glides at 416 meters with a speed of 45.2 m/s. The initial mechanical energy is

Operating in terms of m


Then we know the glider dives to 278 meters and we need to know their final speed, let's call it
. The final mechanical energy is

Operating and factoring

Both mechanical energies must be the same, so

Simplifying by m and rearranging

Computing

The glider's new speed is 68.90 m/s