Answer:
2.5g
Explanation:
When the reaction goes into completion, they will produce 2.5g. This is complement the law of conservation of mass.
According to the law of conservation of mass "in a chemical reaction, matter is neither created nor destroyed but transformed from one form to another".
- The mass of reactants and products in a chemical reaction must be the same.
- There is no change in mass in moving from reactant to product
- So, if we start with 2.5g of reactants, we must end with 2.5g of products.
I'm pretty sure it's 9726 milligrams of iodine. Hope this helps.
Answer:
SbcI3
Explanation:
The symbol of antimony is 'Sb'.
The symbol of chlorine is 'Cl'
First write down the symbol of the first element.
Use the prefix to determine the atoms of first element. If there is no prefix on element then there is only 1 atom.
Now write down the symbol of the second element.
Use the prefix to determine the atoms of second element.
Use prefix as 'mono' for '1', 'di' for '2', 'tri' for '3' and so on.
Answer:
the atoms of the original substances gain, lose and even share their very own electrons. write the symbols of the elements that form the compound. Write down the valency, and lastly go over valencies. This is all I got so far. I hope this helps
Explanation:
Complete Question:
To aid in the prevention of tooth decay, it is recommended that drinking water contain 0.800 ppm fluoride. How many grams of F− must be added to a cylindrical water reservoir having a diameter of 2.02 × 102 m and a depth of 87.32 m?
Answer:
2.23x10⁶ g
Explanation:
The concentration of the fluoride (F⁻) must be 0.800 ppm, which is 0.800 parts per million, so the water must have 0.800 g of F⁻/ 1000000 g of the solution. The density of the water at room temperature is 997 kg/m³ = 997x10³ g/m³. So, the concentration of the fluoride will be:
0.800 g of F⁻/ 1000000 g of the solution * 997x10³ g/m³
0.7976 g/m³
The volume of the reservoir is the volume of the cylinder: area of the base * depth. The base is a circumference, which has an area:
A = πR², where R is the radius = 1.01x10² m (half of the diameter)
A = π*(1.01x10²)²
A = 32047 m²
The volume is then:
V = 32047 * 87.32
V = 2.7983x10⁶ m³
The mass of the F⁻ is the concentration multiplied by the volume:
m = 0.7976 * 2.7983x10⁶
m = 2.23x10⁶ g