energy is required to move from one state or phase of matter to the next. Energy is used to make a liquid into a gas or a solid into a liquid.
Answer: 250
Explanation:
You work this problem by using proportions.
A proportion is the equalization of two ratios.
Here you assume that the ratio of fish with tags to total fish that you catch is the same than the ratio of fish with tags to total fish in the pond.
Mathematically:
- 5 fish with tag / 25 fish = 50 fish with tag / x
Solve for x:
- Multiplication property of equality: x × 5 = 50 × 25
- Division property of equality: x = 50 × 25 / 5
- Result: 250
Answer: The reactants are baking soda and vinegar. Baking soda is a white powder, and vinegar is a clear liquid. The products of this reaction are carbon dioxide, water, and sodium acetate. Carbon dioxide is a colorless gas, water is a colorless liquid, and sodium acetate is a white crystalline powder.
A chemical change can be seen in how the molecular formulas of the products are different from the reactants, since the reactants have chemically changed into completely different molecules.
Hope this helps
2.38×10^-3
Explanation:
from the question,the we calculate the latent heat of vaporization with the difference in temperature being put into consideration
Answer: At equilibrium, the partial pressure of
is 0.0330 atm.
Explanation:
The partial pressure of
is equal to the partial pressure of
. Hence, let us assume that x quantity of
is decomposed and gives x quantity of
and x quantity of
.
Therefore, at equilibrium the species along with their partial pressures are as follows.
At equilibrium: 0.123-x x x
Now, expression for
of this reaction is as follows.
![K_{p} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}\\0.0121 = \frac{x \times x}{(0.123 - x)}\\x = 0.0330](https://tex.z-dn.net/?f=K_%7Bp%7D%20%3D%20%5Cfrac%7B%5BPCl_%7B3%7D%5D%5BCl_%7B2%7D%5D%7D%7B%5BPCl_%7B5%7D%5D%7D%5C%5C0.0121%20%3D%20%5Cfrac%7Bx%20%5Ctimes%20x%7D%7B%280.123%20-%20x%29%7D%5C%5Cx%20%3D%200.0330)
Thus, we can conclude that at equilibrium, the partial pressure of
is 0.0330 atm.