1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
4 years ago
10

An infinite line of charge with charge density λ1 = 0.6 μC/cm is aligned with the y-axis.

Physics
1 answer:
Ganezh [65]4 years ago
8 0

Answer:

1440 × 10⁴ N/C

Explanation:

Data provided in the question:

Charge density λ1 = 0.6 μC/cm = 6 × 10⁻⁵ C/m

a = 7.5 cm = 0.075 m

Now,

Electric field due to a line charge at a distance 'a' is given as:

Ex(P) = \frac{\lambda}{2\pi\epsilon_0a}

also,

we know

\frac{1}{4\pi\epsilon_0} = 9 × 10⁹ Nm²/C²

Thus,

we have

Ex(P) = \frac{2}{2}\times\frac{\lambda}{2\pi\epsilon_0a}=\frac{2\lambda}{4\pi\epsilon_0a}

therefore,

Ex(P) = \frac{2\times6\times10^{-5}\times9\times10^9}{0.075}

= 1440 × 10⁴ N/C

You might be interested in
An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process,
Sedbober [7]

Answer:

a.T_3=1723.8kPa\\b.n=0.563\\c.MEP=674.95kPa

Explanation:

a. Internal energy and the relative specific volume at s_1 are determined  from A-17:u_1=214.07kJ/kg, \ \alpha_r_1=621.2.

The relative specific volume at s_2 is calculated from the compression ratio:

\alpha_r_2=\frac{\alpha_r_1}{r}\\=\frac{621.2}{16}\\=38.825

#from this, the temperature and enthalpy at state 2,s_2 can be determined using interpolations T_2=862K and h_2=890.9kJ/kg. The specific volume at s_1 can then be determined as:

\alpha_1=\frac{RT_1}{P_1}\\\\=\frac{0.287\times 300}{95} m^3/kg\\0.906316m^3/kg

Specific volume,s_2:

\alpha_2=\frac{\alpha_1}{r}\\=\frac{0.906316}{16}m^3/kg\\=0.05664m^3/kg

The pressures at s_2 \ and\  s_3 is:

P_2=P_3=\frac{RT_2}{\alpha_2}\\\\=\frac{0.287\times862}{0.05664}\\=4367.06kPa

.The thermal efficiency=> maximum temperature at s_3 can be obtained from the expansion work at constant pressure during s_2-s_3

\bigtriangleup \omega_2_-_3=P(\alpha_3-\alpha_2)\\R(T_3-T_2)=P\alpha(r_c-1)\\T_3=T_2+\frac{P\alpha_2}{R}(r_c-1)\\\\=(862+\frac{4367\times 0.05664}{0.287}(2-1))K\\=1723.84K

b.Relative SV and enthalpy  at s_3 are obtained for the given temperature with interpolation with data from A-17 :a_r_3=4.553 \ and\  h_3=1909.62kJ/kg

Relative SV at s_4 is

a_r_4=\frac{r}{r_c}\alpha _r_3

==\frac{16}{2}\times4.533\\=36.424

Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

n=1-\frac{q_o}{q_i}\\=1-\frac{u_4-u_1}{h_3-h_2}\\=1-\frac{65903-214.07}{1909.62-890.9}\\=0.563

Hence, the thermal efficiency is 0.563

c. The mean relative pressure is calculated from its standard definition:

MEP=\frac{\omega}{\alpa_1-\alpa_2}\\=\frac{q_i-q_o}{\alpha_1(1-1/r)}\\=\frac{1909.62-890.9-(65903-214.7)}{0.90632(1-1/16)}\\=674.95kPa

Hence, the mean effective relative pressure is 674.95kPa

3 0
3 years ago
A uniformly charged sphere has a total charge of 300uc and a radius of 8cm. Find the electric field density at A point 16cm from
s2008m [1.1K]

E = <u>kQ</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>

(r + h)²

where,

k = 9 × 10^9Nm²C^-2

Q = total charge, 300uC = 300 × 10^ -6C

r = 8 × 10^ -2m

h = 16 × 10^ -2m

then,

E = <u>9</u><u>e</u><u>9</u><u> </u><u>*</u><u> </u><u>3</u><u>0</u><u>0</u><u>e</u><u>^</u><u>-</u><u>6</u><u> </u><u> </u><u> </u><u> </u>

(8e^-2 + 16e^-2)²

E = 4687500N/C

6 0
2 years ago
A horizontal 810-N merry-go-round of radius 1.60 m is started from rest by a constant horizontal force of 55 N applied tangentia
Sloan [31]

Answer:

576 joules

Explanation:

From the question we are given the following:

weight = 810 N

radius (r) = 1.6 m

horizontal force (F) = 55 N

time (t) = 4 s

acceleration due to gravity (g) = 9.8 m/s^{2}

K.E = 0.5 x MI x ω^{2}

where MI is the moment of inertia and ω is the angular velocity

MI = 0.5 x m x r^2

mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg

MI = 0.5 x 82.65 x 1.6^{2}

MI = 105.8 kg.m^{2}

angular velocity (ω) = a x t

angular acceleration (a) = torque ÷ MI

where torque = F x r = 55 x 1.6 = 88 N.m

a= 88 ÷ 105.8 = 0.83 rad /s^{2}

therefore

angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s

K.E = 0.5 x MI x ω^{2}

K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules

6 0
3 years ago
Please help !! In the diagram, q1 = +0.00200 C, q2 = 0.00180 C, and q3 = +0.00830 C. the net force on q2 is zero. how far is q2
VikaD [51]

Answer:

2.03715

Explanation:

32364=8.99\cdot 10^9\cdot \frac{0.00180\cdot 0.00830}{2.03715^2}

4 0
3 years ago
A common misconception is that an object always moves when a force acts on it. Why is this statement incorrect? Explain the conc
dsp73

Answer:

The statement is incorrect because, a force acting on an object does not necessarily have to produce motion.

People have the misconception that when a force acts on an object it always produces motion

Explanation:

The statement is incorrect because, a force acting on an object does not necessarily have to produce motion. It could be in static equilibrium where the net force is zero and produces not motion. The body could also be in dynamic equilibrium when  no net force acts on it moving at a constant velocity. But here we are concerned with static equilibrium since the body does not move at all.

People have the misconception that when a force acts on an object it always produces motion and, we have seen from the above tat its not always true.

3 0
3 years ago
Other questions:
  • When making a sound source near a reflective surface, such as making a person at a podium, the sound can reflect off of the surf
    15·1 answer
  • A 2.4 kg box has an initial velocity of 3.6 m/s upward along a plane inclined at 27◦ to the horizontal. The coefficient of kinet
    5·1 answer
  • A string with a mass of 0.034 kg has a length of 4.80 m. If the tension in the string is 100.00 N and a sinusoidal wave with an
    14·1 answer
  • Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.360 mm wide. The diffraction pattern is observed
    5·1 answer
  • Scientists now think high-fructose corn syrup may disrupt appetite control, making people
    13·1 answer
  • The particles that wake up matter don not change during an?
    11·1 answer
  • 3. Forces do ________ always cause an object to move.<br> need this ASAP
    6·2 answers
  • Is this a balanced equation? 6O2+ C6H12O6---&gt; 6 CO2 + 6H2O <br><br> ]
    14·1 answer
  • Is the process of science described in this lesson similar to your initial ideas about how science is carried out? Explain why o
    14·1 answer
  • 1 5kg cat is lifted 2 m into the air.how much gpe does it gain?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!