Answer:
the time taken for the motion is 3.37 s
Explanation:
Given;
initial velocity of the skydiver, u = 0
final velocity of the skydiver, v = 33 m/s
The time taken for the motion is calculated as;
v = u + gt
33 = 0 + 9.8t
33 = 9.8t
t = 33 / 9.8
t = 3.37 s
Therefore, the time taken for the motion is 3.37 s
Answer:
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).
Explanation:
The gravitational force is the force of mutual attraction that two objects with mass experience.
The Law of Universal Gravitation enunciated by Newton says that every material particle attracts any other material particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distance that separates them. Mathematically this is expressed as:

where m1 and m2 are the masses of the objects, r the distance between them and G a universal constant that receives the name of constant of gravitation.
If the distance between two particles is reduced by half, then, where F' is the new value of the gravitational force:




F'=4*F
<u><em>
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).</em></u>
Form concentric circles around the wire
If 50 identical light bulbs are connected in series across
a single power source, then the voltage across each bulb
is ( 1/50 ) of the voltage delivered by the power source.
Answer:
about 4.74 seconds
Explanation:
The time to fall distance d from height h is given by ...
t = √(2d/g)
t = √(2·110 m/(9.8 m/s^2)) ≈ 4.74 s
It will take the car about 4.74 seconds to fall 110 meters to the river.
__
We assume the car's speed is horizontal, so does not add or subtract anything to/from the time to fall from the height.