Answer:C
Explanation:
When a constant horizontal force is applied to the box, box started moving in the horizontal direction such that it moves with constant velocity 
Constant velocity implies that net force on the box is zero
i.e. there must be an opposing force which is equal to the applied force and friction force can serve that purpose.
So option c is the correct choice.
Vi=0m/s
Vf=?
A=9.81
D=44
T=not needed
Vf^2=Vi^2+2ad
Vf=2ad square rooted
Vf=2(9.81)(44) square root it
Vf=29.3m/s
Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
Answer:
Lorsque l'on détend l'air son volume augmente et sa pression diminue. L'air qui est un mélange de gaz est compressible et expansible. – Lorsque l'on comprime l'air, son volume diminue et sa pression augmente. – Lorsque l'on détend l'air, son volume augmente et sa pression diminue.
As we use the Kinetic energy and the equation is 1/2mv^2, changing its mass will change its speed and its energy. So more mass, more speed more energy. also the gravitational potential energy; mass x gravity x height; more mass and more height more speed as it go down to the slope! Hope it helps!