Answer:
Inducted Magnetic field will be toward from you
Inducted current direction will be counter clockwise.
Explanation:
Lenz's law states that the direction of the current induced in a wire by a changing magnetic field is such that the magnetic field created by the induced current opposes the initial changing magnetic field.
So if the field begins to decrease, the induced magnetic field would try to stop this, so its direction will be the same as the magnetic field, toward from you.
This induced magnetic field is produced by the current in the wire. If the inducted magnetic field will be toward you, the right hand rule says that the direction from the inducted current will be counter clockwise.
Answer:
Decreases the time period of revolution
Explanation:
The time period of Cygnus X-1 orbiting a massive star is 5.6 days.
The orbital velocity of a planet is given by the formula,
v = √[GM/(R + h)]
In the case of rotational motion, v = (R +h)ω
ω = √[GM/(R + h)] /(R +h)
Where 'ω' is the angular velocity of the planet
The time period of rotational motion is,
T = 2π/ω
By substitution,
<em>T = 2π(R +h)√[(R + h)/GM] </em>
Hence, from the above equation, if the mass of the star is greater, the gravitational force between them is greater. This would reduce the time period of revolution of the planet.
Answer:
The metal atoms in the wire can't move, but their outer electrons can. The force pushes those electrons and they move to further parts of the wire, trying to reach the other end. As the electrons move away, new electrons flow into the wire through the battery to take their place.
Explanation: