Answer:
Mirages happen when the ground is very hot and the air is cool.
Explanation:
They happen when light passes through two layers of air with different temperatures. The desert sun heats the sand, which in turn heats the air just above it. The hot air bends light rays and reflects the sky.
When you see it from a distance, the different air masses colliding with each other act as a mirror.
Protons do not move out of the nucleus of atoms although they repel each other.
Remember that protons are particles with positive charge and they held together in the nucleus of the atom which is a tiny tiny region. As you know, like charges repel each other, which means that the protons exert a repulsion force.
The answer is n= 6.
What is Balmer series?
The Balmer series is the portion of the emission spectrum of hydrogen that represents electron transitions from energy levels n > 2 to n = 2. These are four lines in the visible spectrum. They are also known as the Balmer lines. The four visible Balmer lines of hydrogen appear at 410 nm, 434 nm, 486 nm and 656 nm.
For the Balmer series, the final energy level is always n=2. So, the wavelengths 653.6, 486.1, 434.0, and 410.2 nm correspond to n=3, n=4, n=5, and n=6 respectively. Since the last wavelength, 410.2 nm, corresponds to n=6, the next wavelength should logically correspond to n=7.
To solve for the wavelength, calculate the individual energies, E2 and E7, using E=-hR/(n^2). Then, calculate the energy difference between E2 (which is the final) and E7 (which is the initial). Finally, use lamba=hc/E to get the wavelength.
To learn more about emission spectrum click on the link below:
brainly.com/question/24213957
#SPJ4
The ball's vertical velocity at the time it just passes over the goal is 0 m/s. Its initial vertical velocity is unknown and we denote it by
, where
here is the ball's initial speed. Vertically, the only force acting on the ball is gravity, which attributes a downward acceleration of 9.8 m/s^2. We expect the maximum height achieved by the ball to be 2.4 m, so we can find the initial speed by solving


ANSWER: NATURE
EXPLAINTION: