1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
3 years ago
13

70 miles = ______ kilometers

Mathematics
2 answers:
vampirchik [111]3 years ago
4 0
70 Miles = 112.65408 Kilometers
marysya [2.9K]3 years ago
4 0
1 mile is 1.60934 km,
and 70 miles is 112.654 in kilometers.
You might be interested in
Kai and aaron ate 5/6 of pizza . explain how you can tell what fraction of the pizza is left
NeX [460]
Hi there!

Since 1 - 5/6 = 1/6, 1/6 of the pizza is left. 

Hope this helps!
5 0
3 years ago
What is 9.423 rounded to the nearest one
MrRa [10]

Answer:

9.423 rounded to the nearest one is 9

Step-by-step explanation:

5 0
3 years ago
Measure the lengths of the sides of ∆ABC in GeoGebra, and compute the sine and the cosine of ∠A and ∠B. Verify your calculations
marusya05 [52]

Answer:

Sin \angle A =0.80

Cos \angle A=0.60

Sin \angle B =0.60

Cos \angle B=0.80

Step-by-step explanation:

Given

I will answer this question using the attached triangle

Solving (a): Sine and Cosine A

In trigonometry:

Sin \theta =\frac{Opposite}{Hypotenuse} and

Cos \theta =\frac{Adjacent}{Hypotenuse}

So:

Sin \angle A =\frac{BC}{BA}

Substitute values for BC and BA

Sin \angle A =\frac{8cm}{10cm}

Sin \angle A =\frac{8}{10}

Sin \angle A =0.80

Cos \angle A=\frac{AC}{BA}

Substitute values for AC and BA

Cos \angle A=\frac{6cm}{10cm}

Cos \angle A=\frac{6}{10}

Cos \angle A=0.60

Solving (b): Sine and Cosine B

In trigonometry:

Sin \theta =\frac{Opposite}{Hypotenuse} and

Cos \theta =\frac{Adjacent}{Hypotenuse}

So:

Sin \angle B =\frac{AC}{BA}

Substitute values for AC and BA

Sin \angle B =\frac{6cm}{10cm}

Sin \angle B =\frac{6}{10}

Sin \angle B =0.60

Cos \angle B=\frac{BC}{BA}

Substitute values for BC and BA

Cos \angle B=\frac{8cm}{10cm}

Cos \angle B=\frac{8}{10}

Cos \angle B=0.80

Using a calculator:

A = 53^{\circ}

So:

Sin(53^{\circ}) =0.7986

Sin(53^{\circ}) =0.80 -- approximated

Cos(53^{\circ}) = 0.6018

Cos(53^{\circ}) = 0.60 -- approximated

B = 37^{\circ}

So:

Sin(37^{\circ}) = 0.6018

Sin(37^{\circ}) = 0.60 --- approximated

Cos(37^{\circ}) = 0.7986

Cos(37^{\circ}) = 0.80 --- approximated

8 0
3 years ago
Read 2 more answers
(9r^2+4r-7)+(3r^2-3r)
bixtya [17]

Answer:

12r2+r−7

Step-by-step explanation:

hope it helped

8 0
2 years ago
Please help show work<br> (Don’t mind my answer I accidentally clicked)<br><br> anything helps :)
Akimi4 [234]
There’s no work for you to show
6 0
3 years ago
Other questions:
  • Lim of x^2-3sinx/x as x approaches 0
    5·1 answer
  • Which expression is equivalent 121x^2-64y^2 ?
    13·1 answer
  • Simpilify (2 3/5) divided by (-3 3/4)
    9·1 answer
  • PLEASE HELP!!!!!!!!!! What is 2^4 AND <br> 3^5
    10·2 answers
  • How do you simplify 4h-3
    5·2 answers
  • Simplify. <br> 5/√10 <br><br> A. √5 <br> B. √10/2 <br> C. √2/2 <br> D. √2
    7·1 answer
  • Find the area in blue.
    7·1 answer
  • The time required to complete a job varies inversely as the number of
    6·1 answer
  • Increase 25cm in the ratio 6:5​
    5·1 answer
  • If I have two points on a graph, let's say (4,5) and (8,10) what is the slope between the points? ​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!