Answer: white
Explanation:
prisms separate white light, such as that from the sun by wavelength.
Brainliest
Force of 500 N is acting on the parachutist.
Parachutist applies 500 N force in downward direction.
Answer:
300 N upward
Solution:
Parachutist feels air resistance of 800 N.
Thus, 800 N of force is acting in upward direction.
Total force acting on the parachutist is given by,
= air resistance force - force of parachutist
= 800-500
= 300 N
Direction of force is in upward direction because the air resistance force is more than force of parachutist.
Answer:
d²x/dt² = - 4dx/dt - 4x is the required differential equation.
Explanation:
Since the spring force F = kx where k is the spring constant and x its extension = 2.45 equals the weight of the 4 kg mass,
F = mg
kx = mg
k = mg/x
= 4 kg × 9.8 m/s²/2.45 m
= 39.2 kgm/s²/2.45 m
= 16 N/m
Now the drag force f = 16v where v is the velocity of the mass.
We now write an equation of motion for the forces on the mass. So,
F + f = ma (since both the drag force and spring force are in the same direction)where a = the acceleration of the mass
-kx - 16v = 4a
-16x - 16v = 4a
16x + 16v = -4a
4x + 4v = -a where v = dx/dt and a = d²x/dt²
4x + 4dx/dt = -d²x/dt²
d²x/dt² = - 4dx/dt - 4x which is the required differential equation
Answer:
the distance from charge A to C is r₁₃= 1.216 m
Explanation:
following Coulomb's law , the force exerted by 2 point charges between themselves is:
F= k*q₁*q₂/r₁₂² , where q is charge , r is distance and 1 and 2 represents the charge A and charge B respectively , k=constant
since C ( denoted as 3) is at equilibrium
F₁₃=F₂₃
k*q₁*q₃/r₁₃²=k*q₂*q₃/r₂₃²
q₁/r₁₃²=q₂/r₂₃²
r₁₃²/q₁=r₂₃²/q₂
r₂₃=r₁₃*√(q₂/q₁)
since C is at rest and is co linear with A and B ( otherwise it would receive a net force in either vertical or horizontal direction) , we have
r₁₃+r₂₃=d=r₁₂
r₁₃+r₁₃*√(q₂/q₁)=d
r₁₃*(1+√(q₂/q₁))=d
r₁₃=d/(1+√(q₂/q₁))
replacing values
r₁₃=d/(1+√(q₂/q₁)) = 3.00 m/(1+√(3.10 C/1.44 C)) = 1.216 m
thus the distance from charge A to C is r₁₃= 1.216 m
Explanation:
Gravity is the force of attraction between two objects. It depends upon the mass of the objects and the distance between the objects. Mathematically, the force of gravity is given by :

Where
G is the universal gravitational constant
are masses
d is the distance between two masses
So, statement (2) describes gravity "Gravity is the force of attraction between two objects; it is dependent upon the mass of the objects and the distance between the objects".