The maximum velocity in a banked road, ignoring friction, is given by;
v = Sqrt (Rg tan ∅), where R = Radius of the curved road = 2*1000/2 = 1000 m, g = gravitational acceleration = 9.81 m/s^2, ∅ = Angle of bank.
Substituting;
30 m/s = Sqrt (1000*9.81*tan∅)
30^2 = 1000*9.81*tan∅
tan ∅ = (30^2)/(1000*9.81) = 0.0917
∅ = tan^-1(0.0917) = 5.24°
Therefore, the road has been banked at 5.24°.
if we are walking on a perfectly smooth ground which has no friction our force would simply cancel out the force reverted by the ground and we would fall.
We need it to help push out feet off the ground
Hope those helps :)
Answer:
38 cm from q1(right)
Explanation:
Given, q1 = 3q2 , r = 60cm = 0.6 m
Let that point be situated at a distance of 'x' m from q1.
Electric field must be same from both sides to be in equilibrium(where EF is 0).
=> k q1/x² = k q2/(0.6 - x)²
=> q1(0.6 - x)² = q2(x)²
=> 3q2(0.6 - x)² = q2(x)²
=> 3(0.6 - x)² = x²
=> √3(0.6 - x) = ± x
=> 0.6√3 = x(1 + √3)
=> 1.03/2.73 = x
≈ 0.38 m = 38 cm = x
Answer:
period
Explanation:
A wave takes 0.5 seconds to complete one cycle. It is called the time period of the wave. It is the time taken by the wave to complete one cycle.
The relation between the time period and the frequency is given by :
T = 1/f
Where
f is frequency of the wave
Hence, the correct option is (a) "period".
Answer:
Sound intensity is the amount of energy carried by sound versus loudness is a subjective measurement of the audible sound.
Sound intensity is measured in watt per square meter where loudness is measured in sones (sone is a subjective measurement and not an SI unit)