The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.
Explanation:
It is given that,
Let Charge of
is taken from points A & B such that
.
We need to find the energy of charge. Electric potential is defined as the work done per unit of electric charge. So,

So, the energy of charge decreases by
. Hence, the correct option is (a).
Answer:
Part a)
Velocity = 6.9 m/s
Part b)
Position = (3.6 m, 5.175 m)
Explanation:
Initial position of the particle is ORIGIN
also it initial speed is along +X direction given as

now the acceleration is given as

when particle reaches to its maximum x coordinate then its velocity in x direction will become zero
so we will have



Part a)
the velocity of the particle at this moment in Y direction is given as



Part b)
X coordinate of the particle at this time



Y coordinate of the particle at this time



so position is given as (3.6 m, 5.175 m)
Answer:
Work is the energy required to move an object from one point to another. while power is the energy transferred per unit time.
Energy can also be defined as the ability to do work.
Answer:
6N
Explanation:
Given parameters:
Mass of object = 6kg
Initial velocity = 5m/s
Final velocity = 25m/s
Time = 30s
Unknown:
Net force acting on the object = ?
Solution:
From Newton's second law of motion:
Force = mass x acceleration
Acceleration is the rate of change of velocity with time
Acceleration =
Force = mass x
So;
Force = 6 x
= 6N