Answer:
4.42 × 10⁻³⁷ m
Explanation:
Step 1: Given and required data
- Mass of the body (m): 1 kg
- Velocity of the body (v): 1500 m/s
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
Step 2: Calculate the de Broglie wavelenght (λ) of the body
We will use de Broglie's equation.
λ = h / m × v
λ = (6.63 × 10⁻³⁴ J.s) / 1 kg × (1500 m/s) = 4.42 × 10⁻³⁷ m
The molecular mass of carbon monoxide (CO) is 28 g/mol
<u><em>calculation</em></u>
The molecular mass of CO = atomic mass of C + atomic mass of O
From periodic table the atomic mass of C = 12 g/mol and for O = 16 g/mol
Therefore the molecular mass of Co = 12 g/mol + 16 g/mol = 28 g/mol
Answer:
d) A - 70% B - 30%
Explanation:
If x is the abundance of A, and 1−x is the abundance of B, then:
x (32.0) + (1−x) (33.0) = 32.3
32x + 33 − 33x = 32.3
33 − x = 32.3
x = 0.7
The abundance of A is 70%, and the abundance of B is 30%.
Answer:
I don't really understand what you asking in this question so if you don't mind plz tell me in a better form