I thinks it’s not this article we should cajnges it
2 FeO + 1 C ===》2 Fe + 1 CO2
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
Answer:
number of moles = 0.21120811
Explanation:
To find the number of moles, given the mass of the solute, we use the formula:




Label the variables with the numbers in the problem:



The first thing we have to do is find the molar mass of sodium sulfate, in order for us to use the formula for finding the number of moles:
Formula for finding the molar mass of sodium sulfate:

For the variables and what they mean are below for finding the molar mass of sodium sulfate:





Plug the numbers into the formula, to find the molar mass of sodium sulfate:











Now that we have found the molar mass, we can calculate the number of moles in the solution of sodium sulfate with the formula:








0.21120811 rounded gives you 0.2112
or if you did the problem without decimals
30 grams of sodium sulfate divided by its molecular weight – which we found to be 142 – gives us a value of 0.2113 moles.