<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Double displacement reaction is defined as the reaction in which exchange of ions takes place.

When sodium permanganate reacts with iron (III) chloride, it leads to the production of sodium chloride and iron (III) permanganate.
The chemical equation for the reaction of sodium permanganate and iron (III) chloride follows:

By Stoichiometry of the reaction:
3 moles of aqueous solution of sodium permanganate reacts with 1 mole of aqueous solution of iron (III) chloride to produce 1 mole of solid iron permanganate and 3 moles of aqueous solution of sodium chloride
Hence, the balanced chemical equation is written above.
Answer:
It is known that 1 mol of a molecule contains 6.023×1023 6.023 × 10 23 number of molecules. So, 0.25 moles of CO2 C O 2.
<span>The best choice is hypochlorous acid nitrous acid (HNO2) because it has the nearest value of pK to the desired pH.
pKa of </span>nitrous acid<span> is 3.34
If we know pKa and pH values, we can calculate the required ratio of conjugate base (NO2⁻) to acid (HNO2) from the following equation:
pH=pKa + log(conc. of base)/( conc. of acid)
</span><span>3.19=3.34 + log c(NO2⁻)/c(HNO2)
</span><span>3.19 - 3.34 = log c(NO2⁻)/c(HNO2)
-0.15 = log c(NO2⁻)/c(HNO2)
c(NO2⁻)/c(HNO2) = 10⁰¹⁵ = 1.41
</span>
The correct answer is B. The tendency of molecules to move toward areas of lower concentration is called diffusion. This happens when there is a concentration gradient. This is described by the Fick's laws of diffusion. Diffusion is the net movement of molecules from a higher concentration to lower concentration to achieve equilibrium.
The different types of motion