Explanation:
Given:
v₀ = 250 mph
v = 0 mph
t = 25 s
Find: a
v = at + v₀
(0 mph) = a (25 s) + (250 mph)
a = -10 mph/s
Answer:
a) 
b) 
Explanation:
Given:
String vibrates transversely fourth dynamic, thus n = 4
mass of the string, m = 13.7 g = 13.7 × 10⁻¹³ kg
Tension in the string, T = 8.39 N
Length of the string, L = 1.87 m
a) we know

where,
= wavelength
on substituting the values, we get

or

b) Speed of the wave (v) in the string is given as:

also,

equating both the formula for 'v' we get,

on substituting the values, we get

or

or

Answer: false
Explanation: the longer the period, the less thef= frequency
Answer:
- The emf of the generator is 6V
- The internal resistance of the generator is 1 Ω
Explanation:
Given;
terminal voltage, V = 5.7 V, when the current, I = 0.3 A
terminal voltage, V = 5.1 V, when the current, I = 0.9 A
The emf of the generator is calculated as;
E = V + Ir
where;
E is the emf of the generator
r is the internal resistance
First case:
E = 5.7 + 0.3r -------- (1)
Second case:
E = 5.1 + 0.9r -------- (2)
Since the emf E, is constant in both equations, we will have the following;
5.1 + 0.9r = 5.7 + 0.3r
collect similar terms together;
0.9r - 0.3r = 5.7 - 5.1
0.6r = 0.6
r = 0.6/0.6
r = 1 Ω
Now, determine the emf of the generator;
E = V + Ir
E = 5.1 + 0.9x1
E = 5.1 + 0.9
E = 6 V