Leg crams are symptoms of lack of potassium
Answer : Valence electrons in atom A = 1, B = 6 and C = 2.
Explanation :
Valence electrons means the outermost electrons are the ones which involved in bonding. Electrons are arranged in energy levels or shells.
Valence electrons are found in the highest energy orbitals of an element.
- The electronic configuration of (Na) is
. The highest energy orbital is 3s orbital which contains 1 electron. So,
The number of valence electrons in (Na) = A = 1
Similarly,
- The electronic configuration of (O) is
. The highest energy orbital are 2s and 2p orbitals which contains (2 + 4) = 6 electrons. So,
The number of valence electrons in (O) = B = 6
- The electronic configuration of (Fe) is
. The highest energy orbital is 4s orbital which contains 2 electrons. So,
The number of valence electrons in (Fe) = C = 2
Step 1
The reaction is written and balanced:
4 Rb + O2 =>2 Rb2O
-----------
Step 2
Define % yield of product (Rb2O) = (Actual yield/Theoretical yield) x 100
The actual yield is provided by the exercise = 39.7 g
----------
Step 3
Determine the limiting reactant. The molar masses are needed to solve this:
For Rb) 85.4 g/mol
For O2) 32 g/mol
Procedure:
4 Rb + O2 =>2 Rb2O
4 x 85.4 g Rb ----- 32 g O2
82.4 g Rb ----- X = 7.72 g O2 are needed
For 82.4 g Rb, 7.72 g O2 is needed, but there is 11.6 g O2. Therefore, O2 is the excess agent. Rb is the limiting reactant.
--------
Step 4
Determine the theoretical yield from the limiting reactant:
The molar mass Rb2O) 187 g/mol
Procedure:
4 x 85.4 g Rb ------ 2 x 187 g Rb2O
82.4 g Rb ------ X = 90.2 g Rb2O = Theoretical yield
---------
Step 5
% yield = Actual y./Theoretical y. x 100 = (39.7 g/90.2 g) x 100 = 44 % approx.
Answer: % yield = 44 %
Answer: At STP, one mole (6.02 × 1023 representative particles) of any gas occupies a volume of 22.4 L (Figure below). A mole of any gas occupies 22.4 L at standard temperature and pressure (0°C and 1 atm).
Explanation:
That the answer
Answer:
The approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
Explanation:
First we have to calculate the heat gained by the calorimeter.

where,
q = Heat gained = ?
c = Specific heat = 
ΔT = The change in temperature = 3.08°C
Now put all the given values in the above formula, we get:


Now we have to calculate molar enthalpy of combustion of this substance :

where,
= enthalpy change = ?
q = heat gained = 8.2544kJ
n = number of moles methane = 

Therefore, the approximate molar enthalpy of combustion of this substance is -66 kJ/mole.