Answer:
3.2 g O₂
Explanation:
To find the mass of O₂, you need to (1) convert grams H₂O to moles H₂O (via molar mass), then (2) convert moles H₂O to moles O₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles O₂ to grams O₂ (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given value (3.6 g).
Molar Mass (H₂O): 2(1.008 g/mol) + 15.998 g/mol
Molar Mass (H₂O): 18.014 g/mol
2 H₂O -----> 2 H₂ + 1 O₂
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
3.6 g H₂O 1 mole 1 mole O₂ 31.996 g
---------------- x --------------- x --------------------- x --------------- = 3.2 g O₂
18.014 g 2 moles H₂O 1 mole
Answer:
3.4 mol Li2SO4
Explanation:
6.8 mol LiOH × (1 mol Li2SO4/2 mol LiOH)
= 3.4 mol Li2SO4
Answer:
b-acting as a standard unit of measure
Explanation:
Physical change can change a substance by affecting the form of a chemical change.
Examples of physical changes:
Something cut (Paper)
Molded (Bread)
Boiled (Water)
Mixed (Berries and strawberries)
HOPE THIS HELPS YOU! ^_^
Answer:
3. 116.5 V
4. 119.6 V
Explanation:
3. Determination of the voltage.
Resistance (R) = 25 Ω
Current (I) = 4.66 A
Voltage (V) =?
V = IR
V = 4.66 × 25
V = 116.5 V
Thus, the voltage is 116.5 V
4. Determination of the voltage.
Current (I) = 9.80 A
Resistance (R) = 12.2 Ω
Voltage (V) =?
V = IR
V = 9.80 × 12.2
V = 119.6 V
Thus, the voltage is 119.6 V