Answer:
No photoelectric effect is observed for Mercury.
Explanation:
From E= hf
h= Plank's constant
f= frequency of incident light
Threshold Frequency of mercury= 435×10^3/ 6.6×10^-34 × 6.02×10^23
f= 11×10^14 Hz
The highest frequency of visible light is 7.5×10^14. This is clearly less than the threshold frequency of mercury hence no electron is emitted from the mercury surface
It is a physical change because you can not put it back like it was
Answer:
4804.5 g of SO₂ are needed to the reaction
Explanation:
The reaction to produce sulfuric acid is:
2SO₂ + O₂ + 2H₂O → 2H₂SO₄
Ratio is 1:2. 1 mol of oxygen needs 2 moles of sulfur dioxide in order to react. We can propose this rule of three.
If 1 mol of O₂ react to 2 moles of SO₂
Then, 37.50 moles of O₂ will react with (37.5 . 2) /1 = 75 moles of SO₂
We convert the moles to mass, to know the answer:
75 mol . 64.06 g / 1 mol = 4804.5 g of SO₂
Answer:
See explanation
Explanation:
All molecules possess the London dispersion forces. However London dispersion forces is the only kind of intermolecular interaction that exists in nonpolar substances.
So, the only kind of intermolecular interaction that exists in dimethyl ether is London dispersion forces.
As for ethyl alcohol, the molecule is polar due to the presence of polar O-H bond. In addition to London dispersion forces, dipole-dipole interactions and specifically hydrogen bonding also occurs between the molecules.
Because ethyl alcohol is polar, it is more soluble in water than dimethyl ether.
Answer:
I guess A, I am not sure...