You would use this number, 6.02×1023 (Avogadro's number) to convert from particles, atoms, or molecules to moles. Whenever you go to the mole, divide by Avogadro's number. When you go to the unit from moles, multiply by Avogadro's number.
<h3>
Answer:</h3>
0.50 mol SiO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
30 g SiO₂ (sand)
<u>Step 2: Identify Conversions</u>
Molar Mass of Si - 28.09 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of SiO₂ - 28.09 + 2(16.00) = 60.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig figs and round. We are given 2 sig figs.</em>
0.499251 mol SiO₂ ≈ 0.50 mol SiO₂
b. Analysis. In the analysis step, you organize and interpret your data to see if they support your hypothesis.
a. Experimentation is <em>incorrect</em> because this is the step in which you do experiments to test if your prediction is accurate.
c. Conclusion is <em>incorrect</em> because a conclusion is a decision you make to accept or reject your hypothesis.
d. Hypothesis is <em>incorrect</em> because a hypothesis is a proposed explanation for why something happens.
The Earth's rotation has no relation to the phases of the moon.
Like everything else in the sky, the moon rises in the east just like the stars, planets, and the sun.