Answer:
-5/2+-1/2√37≤x≤-5/2+1/2√37
Step-by-step explanation:
Step 1: Find the critical points
-x^2-5x+3=0
For this equation: a=-1, b=-5, c=3
−1x^2+−5x+3=0
x=−b±√b2−4ac/2a
x=−(−5)±√(−5)2−4(−1)(3)/2(-1)
x=5±√37
/−2
x=-5/2+1/2√37
Step 2: Check intervals in between critical points
x≤-5/2+1/2 √37 (Doesn't work in original inequality)
-5/2+-1/2√37≤x≤-5/2+1/2√37 (Works in original inequality)
x≥-5/2+1/2 √37 (Doesn't work in original inequality)
Answer:
B. y = 2x
Step-by-step explanation:
every y value is the value of x multiplied by 2
so that means y=2x
hope this helps luv <3
Answer:
x = 5/2 & x = 1/3
Step-by-step explanation:
Create two equations and solve
1) 2x-5 = 0 & 2) 3x-1 = 0
1) 2x = 5
x = 5/2
2) 3x = 1
x = 1/3
You create two equations as you want the left hand side (LHS) to equal 0 (RHS), thus if one of the brackets becomes 0 it will result in the whole LHS beocming 0 as the brackets are being multiplied (anything multiplied by 0 = 0)
Hello!
Here are some rules to determine the number of significant figures.
- Numbers that are not zero are significant (45 - all are sigfigs)
- Zeros between non-zero digits are significant (3006 → all are sigfigs)
- Trailing zeros are not significant (0.067 → the first two zeros are not sigfigs)
- Trailing zeros after a decimal point are always significant (1.000 → all are sigfigs)
- Trailing zeros in a whole number are not significant (7800 → the last two zeros are not sigfigs)
- In scientific notation, the exponential digits are not significant, known as place holders (6.02 x 10² → 10² is not a sigfig)
Now, let's find the number of significant figures in each given number.
A). 296.54
Since these digits are all <em>non-zero</em>, there are 5 significant figures.
B). 5003.1
Since the two <em>zeros are between non-zero digits</em>, they are significant figures. Thus, there are 5 significant figures.
C). 360.01
Again, the two zeros are between non-zero digits. There are 5 significant figures.
D). 18.3
All of these digits are non-zero, hence, there are 3 significant figures.
Therefore, expression D has the fewest number of significant figures being 3.

Except for 2 and 5, all prime numbers end in the digit 1, 3, 7 or 9.