Hydrogen bonds are strong intermolecular forces created when a hydrogen atom bonded to an electronegative atom approaches a nearby electronegative atom. Greater electronegativity of the hydrogen bond acceptor will lead to an increase in hydrogen-bond strength.
I hope this helps
Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.
The balanced chemical reaction for the described reaction above is,
Na2CO3 + 2HCl ---> 2NaCl + H2CO3
From the reaction, 1 mole of Na2CO3 is needed to produce 2 moles of NaCl. In terms of mass, 106 grams of Na2CO3 are needed to produce 116.9 grams of NaCl. From this,
(23.4 g NaCl) x (106 g Na2CO3 / 116.9 NaCl = 21.22 g Na2CO3
Thus, approximately 21.22 g Na2CO3 is needed for the desired reaction.