Answer is: 3,4
Chemical reaction: HNO₂ + NaOH → NaNO₂ + H₂O.
c₀(HNO₂) = 1,2 M = 1,2 mol/dm³.
c₀(NaNO₂) = 0,8 M = 0,8 mol/dm³.
V₀(HNO₂) = V₀(NaNO₂) = 1 dm³ = 1 L.
c₀(NaOH) = 0,5 M = 0,5 mol/dm³.
n₀(HNO₂)= 1,2 mol/dm³ · 1 dm³ = 1,2 mol.
n₀(NaNO₂) = 0,8 mol/dm³ · 1 dm³ = 0,8 mol.
V(NaOH) = 400 mL · 0,001 dm³/mL = 0,4 dm³.
n₀(NaOH) = c₀(NaOH) · V₀(NaOH).
n₀(NaOH) = 0,5 mol/dm³ · 0,4 dm³ = 0,2 mol.
n(HNO₂) = 1,2 mol - 0,2 mol = 1 mol.
n(NaNO₂) = 0,8 mol + 0,2 mol = 1 mol.
c(HNO₂) = 1 mol ÷ 1,4 dm³ = 0,714 mol/dm³.
c(NaNO₂) = 1 mol ÷ 1,4 dm³ = 0,714 mol/dm³.
pH = pKa + log (c(HNO₂) / c(NaNO₂)).
pH = 3,4 + log (0,714 mol/dm³ / 0,714 mol/dm³) = 3,4.
Answer:
through Decantation
Explanation:
Decantation: Decantation is pouring out of upper clear layer of liquid into another container to separate two immiscible liquids or to separate different substances in a suspension mixture.
Therefore, we could use decantation once the sand particles settle down by gently pouring the water into another container. Once the water is transfered, we'll be left with sand in the bottom of the first container.
Hope that helps...
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.
Electrons in sigma <span>bonds remain localized between two atoms. Sigma </span><span>bond results from the formation of </span><span>a molecular orbital </span><span>by the end to </span><span>end overlap of atomic </span>orbitals. Electrons<span> in pi</span> bonds can become delocalized between more than two atoms. Pi bonds result from the formation of molecular orbital by side to side overlap of atomic orbitals.
<span> </span>