Empirical formula is the simplest ratio of components making up the compound. the molecular formula is the actual ratio of components making up the compound.
the empirical formula is CH₂. We can find the mass of CH₂ one empirical unit and have to then find the number of empirical units in the molecular formula.
Mass of one empirical unit - CH₂ - 12 g/mol x 1 + 1 g/mol x 2 = 12 = 14 g
Molar mass of the compound is - 252 .5 g/mol
number of empirical units = molar mass / mass of empirical unit
= 
= 18 units
Therefore molecular formula is - 18 times the empirical formula
molecular formula - CH₂ x 18 = C₁₈H₃₆
molecular formula is C₁₈H₃₆
Answer:
(A) 0.129 M
(B) 0.237 M
Explanation:
(A) The reaction between potassium hydrogen phthalate and barium hydroxide is:
- 2HA + Ba(OH)₂ → BaA₂ + 2H₂O
Where A⁻ is the respective anion of the monoprotic acid (KC₈H₄O₄⁻).
We <u>convert mass of phthalate to moles</u>, using its molar mass:
- 0.978 g ÷ 156 g/mol = 9.27x10⁻³ mol = 9.27 mmol
Now we <u>convert mmol of HA to mmol of Ba(OH)₂</u>:
- 9.27 mmol HA *
= 6.64 mmol Ba(OH)₂
Finally we calculate the molarity of the Ba(OH)₂ solution:
- 6.64 mmol / 35.8 mL = 0.129 M
(B) The reaction between Ba(OH)₂ and HCl is:
- 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O
So<u> the moles of HCl that reacted </u>are:
- 17.1 mL * 0.129 M *
= 4.41 mmol HCl
And the <u>molarity of the HCl solution is</u>:
- 4.41 mmol / 18.6 mL = 0.237 M
All of them are soluble salt.
First one dissociates into two ions.
The second one dissociates into 3 ions.
The third dissociate into 4 ions. therefore, Al(NO3)3
Answer:
396811.337 J
Explanation:
The cost of one short ton of coal = $56.45
The energy related to the short ton of coal = 
Thus, As according to the question,
$56.45 of coal have
of energy.
$1 of coal have
of energy.
<u>The amount of energy = 396811.337 J</u>
Answer: The volume occupied by 2.50 moles of
gas at STP is 56.0L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = ?
n = number of moles = 2.50
R = gas constant =
T =temperature =
(at STP)


Thus the volume occupied by 2.50 moles of
gas at STP is 56.0L