1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
3 years ago
7

g To decrease the intensity of the sound you are hearing from your speaker system by a factor of 36, you can

Physics
1 answer:
Vlada [557]3 years ago
3 0

Answer:

Increase the distance by a factor of 6.

Explanation:

The intensity at a distance r is given by :

I=\dfrac{P}{4\pi r^2}

Here,

P is power emitted

r is distance from source

It means that the intensity is inversely proportional to the distance from the source.

To decrease the intensity of the sound you are hearing from your speaker system by a factor of 36, we can increase the distance by a factor of 6. Hence, this is the required solution.

You might be interested in
a ball is projected upward at time t = 0.00 s from a point on a roof 70 m above the ground. The ball rises, then falls and strik
grin007 [14]

Answer: 17.68 s

Explanation:

This problem is a good example of Vertical motion, where the main equation for this situation is:  

y=y_{o}+V_{o}t-\frac{1}{2}gt^{2} (1)  

Where:  

y=0 is the height of the ball when it hits the ground  

y_{o}=70 m is the initial height of the ball

V_{o}=82m/s is the initial velocity of the ball  

t is the time when the ball strikes the ground

g=9.8m/s^{2} is the acceleration due to gravity  

Having this clear, let's find t from (1):  

0=70m+(82m/s)t-\frac{1}{2}(9.8m/s^{2})t^{2} (2)  

Rewritting (2):

-\frac{1}{2}(9.8m/s^{2})t^{2}+(82m/s)t+70m=0 (3)  

This is a quadratic equation (also called equation of the second degree) of the form at^{2}+bt+c=0, which can be solved with the following formula:

t=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}  (4)

Where:

a=-\frac{1}{2}(9.8m/s^{2}

b=82m/s

c=70m

Substituting the known values:

t=\frac{-82 \pm \sqrt{82^{2}-4(-\frac{1}{2}(9.8)(70)}}{2a}  (5)

Solving (5) we find the positive result is:

t=17.68 s

7 0
3 years ago
Lord Beckett and members of the EIT Co. spot the Black Pearl in the distance making its way towards land. As a
KATRIN_1 [288]

Answer:

Explanation:

The cannonball goes a horizontal  distance of 275 m . It travels a vertical distance of 100 m

Time taken to cover vertical distance =  t ,

Initial velocity u = 0

distance s = 100 m

acceleration a = 9.8 m /s²

s = ut + 1/2 g t²

100 = .5 x 9.8 x t²

t = 4.51 s

During this time it travels horizontally also uniformly so

horizontal velocity Vx = horizontal displacement / time

= 275 / 4.51 = 60.97 m /s

Vertical velocity Vy

Vy = u + gt

= 0 + 9.8 x 4.51

= 44.2 m /s

Resultant velocity

V = √ ( 44.2² + 60.97² )

= √ ( 1953.64 + 3717.34 )

= 75.3 m /s

Angle with horizontal Ф

TanФ = Vy / Vx

= 44.2 / 60.97

= .725

Ф = 36⁰ .

6 0
2 years ago
A 0.5 kg stone is raised from 1m to 2m height from the ground. what is the change in potential energy of the stone?
Usimov [2.4K]

Given: The mass of stone (m) = 0.5 kg

Raised from heights (h₁) = 1.0 m to (h₂) = 2.0 m

Acceleration due to gravity (g) = 9.8 m/s²

To find: The change in potential energy of the stone

Formula: The potential energy (P) = mgh

where, all alphabets are in their usual meanings.

Now, we shall calculate the change in potential energy of the stone

Δ P = P₂ - P₁ = mg (h₂ - h₁)

or,                = 0.5 kg ×9.8 m/s² ×(2.0 m - 1.0 m)

or,                = 4.9 J

Hence, the required change in the potential energy of the stone will be 4.9 J

4 0
3 years ago
A. 24.89<br> B. 25.89<br> C. 17.74<br> D. 19.73
Veronika [31]

Answer: D

Explanation:

Just did it got an 100

5 0
2 years ago
A diffraction pattern forms when light passes through a single slit. The wavelength of the light is 691 nm. Determine the angle
expeople1 [14]

Explanation:

Given that,

Wavelength of the light, \lambda=691\ nm=691\times 10^{-9}\ m

(a) Slit width, a=3.8\times 10^{-4}\ m

The angle that locates the first dark fringe is given by :

sin\theta=\dfrac{\lambda}{a}

sin\theta=\dfrac{691\times 10^{-9}}{3.8\times 10^{-4}}

\theta=0.104^{\circ}

(b) Slit width, a=3.8\times 10^{-6}\ m

The angle that locates the first dark fringe is given by :

sin\theta=\dfrac{\lambda}{a}

sin\theta=\dfrac{691\times 10^{-9}}{3.8\times 10^{-6}}

\theta=10.47^{\circ}

Hence, this is the required solution.

7 0
3 years ago
Other questions:
  • What are 3 ways you can save energy on earth day or any day?
    5·1 answer
  • The coefficient of static friction between Teflon and scrambled eggs is about 0.04. What is the smallest angle from the horizont
    12·1 answer
  • PLEASE HELP I can't figure it out
    5·1 answer
  • Which of the following is the largest disadvantage of hydropower
    14·1 answer
  • Which of these pieces of evidence did NOT help in the development of the theory of plate tectonics?
    9·1 answer
  • Explain one way the water cycle affects climate. Use complete sentences.
    11·1 answer
  • Two cars are travelling in the same direction on a road. The blue car is travelling at 50 m/s in front of the red car, which is
    11·1 answer
  • Amy uses 20 N of force to push a lawnmower 10 meters. How much work does she do?
    9·1 answer
  • If there were no dark energy in the universe, the value of __________ would solely determine the evolution and fate of the unive
    7·1 answer
  • What observational evidence suggests that supermassive black holes are located at the centers of many galaxies
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!