1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
3 years ago
5

If an object is NOT accelerating, then one knows for sure that it is ___.

Physics
1 answer:
tatuchka [14]3 years ago
4 0

"Zero acceleration" means "velocity" that's not changing.

Sadly, it seems that both of these words are almost always
misinterpreted and misunderstood. "Acceleration" does NOT
mean "speeding up", and "velocity" does NOT mean speed.

"Velocity" is the speed AND direction of motion.  So, for example,
'30 miles per hour north' and '30 miles per hour west' are the same
speed but different velocities.

"Acceleration" is ANY change in speed OR direction.  Consider three
different families in three different cars.  One car is speeding up, one is
slowing down, and the third is driving around a curve at a steady speed.
ALL three of the cars are accelerating.

You might be interested in
A fisherman notices that his boat is moving up and down periodically, owing to waves on the surface of the water. It takes 2.5 s
gulaghasi [49]

(a) 0.96 m/s

The period of the wave corresponds to the time taken for one complete oscillation of the boat, from the highest point to the highest point again. Since the time between the highest point and the lowest point is 2.5 s, the period is twice this time:

T=2\cdot 2.5 s=5.0 s

The frequency of the waves is the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{5.0 s}=0.20 Hz

The wavelength instead is just the distance between two consecutive crests, so

\lambda=4.8 m

And the wave speed is given by:

v=\lambda f=(4.8 m)(0.20 Hz)=0.96 m/s

(b) 0.265 m

The total distance between the highest point of the wave and its lowest point is

d = 0.53 m

The amplitude is just the maximum displacement of the wave from the equilibrium position, so it is equal to half of this distance. So, the amplitude is

A=\frac{d}{2}=\frac{0.53 m}{2}=0.265 m

(c) Amplitude: 0.15 m, wave speed: same as before

In this case, the amplitude of the wave would be lower. In fact,

d = 0.30 m

So the amplitude would be

A=\frac{d}{2}=\frac{0.30 m}{2}=0.15 m

Instead, the wave speed would not change, since neither the frequency nor the wavelength of the wave have changed.

8 0
3 years ago
A depiction of a famous scientific experiment is given. Consider how the beam changes when the magnet is off compared to when th
iogann1982 [59]

Answer:

The beam used is a negatively charged electron beam with a velocity of

v = E / B

Explanation:

After reading this long statement we can extract the data to work on the problem.

* They indicate that when the beam passes through the plates it deviates towards the positive plate, so the beam must be negative electrons.

* Now indicates that the electric field and the magnetic field are contracted and that the beam passes without deviating, so the electric and magnetic forces must be balanced

           F_{e} =  F_{m}

           q E = qv B

           v = E / B

this configuration is called speed selector

They ask us what type of beam was used.

The beam used is a negatively charged electron beam with a velocity of v = E / B

6 0
3 years ago
Si el cuerpo no se mueve halle T
Aleks [24]
Well sorry but this is the wrong language.
3 0
2 years ago
Read 2 more answers
A 20 ft ladder leans against a wall. The bottom of the ladder is 3 ft from the wall at time t=0 and slides away from the wall at
stellarik [79]

Answer: 0.516 ft/s

Explanation:

Given

Length of ladder L=20 ft

The speed at which the ladder moving away is v=2 ft/s

after 1 sec, the ladder is 5 ft away from the wall

So, the other end of the ladder is at

\Rightarrow y=\sqrt{20^2-5^2}=19.36\ ft

Also, at any instant t

\Rightarrow l^2=x^2+y^2

differentiate w.r.t.

\Rightarrow 0=2xv+2yv_y\\\\\Rightarrow v_y=-\dfrac{x}{y}\times v\\\\\Rightarrow v_y=-\dfrac{5}{19.36}\times 2=0.516\ ft/s

5 0
3 years ago
Aloop of wire of area 71 cm^2 is placed with its plane parallel to a 16 mt magnetic field. the loop is then rotated so that its
kkurt [141]

Answer:

Approximately 1.62 × 10⁻⁴ V.

Explanation:

The average EMF in the coil is equal to

\displaystyle \frac{\text{Final Magnetic Flux} - \text{Initial Magnetic Flux}}{2},

Why does this formula work?

By Faraday's Law of Induction, the EMF \epsilon induced in a coil (one loop) is equal to the rate of change in the magnetic flux \Phi through the coil.

\displaystyle \epsilon(t) = \frac{d}{dt}(\Phi(t)).

Finding the average EMF in the coil is similar to finding the average velocity.

\displaystyle \text{Average}\; \epsilon = \frac{1}{t}\int_0^t \epsilon(t)\cdot dt.

However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:

\displaystyle \int_0^{t} \epsilon(t)\cdot dt = \int_0^{t} \frac{d}{dt}\Phi(t)\cdot dt = \Phi(t) - \Phi(0).

Hence the equation

\displaystyle \text{Average}\; \epsilon = \frac{1}{t}\int_0^t \epsilon(t)\cdot dt = \frac{\Phi(t)- \Phi(0)}{t}.

Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in \Phi(t) won't matter.

Apply this formula to this question. Note that \Phi, the magnetic flux through the coil, can be calculated with the equation

\Phi = B \cdot A \cdot N \; \sin{\theta}.

For this question,

  • B = \rm 16\; mT = 16\times 10^{-3}\; T is the strength of the magnetic field.
  • A = \rm 71\; cm^{2} = 71\times \left(10^{-2}\right)^2 \; m^{2} is the area of the coil.
  • N = 1 is the number of loops in the coil.
  • \theta is the angle between the field lines and the coil.
  • At \rm 0\;s, the field lines are parallel to the coil, \theta = 0^{\circ}.
  • At \rm 0.7\; s, the field lines are perpendicular to the coil, \displaystyle \theta = 90^{\circ}.

Initial flux: \Phi(0)= 0.

Final flux: \Phi(0.7) = \rm 1.1136\times 10^{-4}\; Wb.

Average EMF, which is the same as the average rate of change in flux:

\displaystyle \frac{\Phi(0.7) - \Phi(0)}{0.7} \approx\rm 1.62\times 10^{-4}\; V.

8 0
3 years ago
Other questions:
  • Part a consider another special case in which the inclined plane is vertical (θ=π/2). in this case, for what value of m1 would t
    7·1 answer
  • The world's highest fountain of water is located, appropriately enough, in Fountain Hills, Arizona. The fountain rises to a heig
    11·2 answers
  • I need help with egg drop assignments any ideas?
    13·1 answer
  • A foam ball of mass 0.150 g carries a charge of -2.00 nC. The ball is placed inside a uniform electric field, and is suspended a
    5·1 answer
  • Samantha is checking the weather for her upcoming trip to Mexico City. The weather forecast predicts a high-pressure system for
    12·2 answers
  • How does the electric force between two charged objects change when the
    7·1 answer
  • Explain briefly how solar energy is used to generate electricity
    11·1 answer
  • How do we maintain heat in our body ?​
    15·1 answer
  • Solve this chemical equation: CH3CH2OH+__O2=CO2+__H2O
    14·1 answer
  • At what temperature, in degrees Celsius, is the speed of sound in air 339 m/s?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!