To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 
The Image distance and Magnification of The Image will be 30 cm and 3.
<h3>What is focal length?</h3>
The focal length of the lens, which is often expressed in millimeters, is the distance between the lens and the image sensor when the subject is in focus.
Given data;
Focal length,f=?
Image distance,v=?
Object distance,u= 10 cm
Magnification,m= 2.85
The focal length is half of the radius;
f=R/2
f=30 Cm/2
f= 15 Cm
The mirror equation is found as;

The magnification of the lens is found as;

Hence, the image distance and magnification of The image will be 30 cm and 3.
To learn more about the focal length refer;
brainly.com/question/16188698
#SPJ1
The answer would be 'First rocks formed on Earth'.
Answer:
With sonar, what happens to sound pulses from a ship after they hit the ocean floor? ... They bounce back to the ship.
Explanation:
Answer:
M. Magnetism is a property of individual atoms.
Explanation:
when a magnet is broken into pieces the new pieces behave like the original magnet this observation shows that magnetism is the property of individual atoms.